[memory refactor][4/n] Update the client-sdk test for RAG (#834)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Update client-sdk tests
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:15:19 -08:00 committed by GitHub
parent 1a7490470a
commit 63f37f9b7c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 236 additions and 228 deletions

View file

@ -286,19 +286,16 @@ def test_rag_agent(llama_stack_client, agent_config):
)
for i, url in enumerate(urls)
]
memory_bank_id = "test-memory-bank"
llama_stack_client.memory_banks.register(
memory_bank_id=memory_bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
vector_db_id = "test-vector-db"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
)
llama_stack_client.memory.insert(
bank_id=memory_bank_id,
llama_stack_client.tool_runtime.rag_tool.insert_documents(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
agent_config = {
**agent_config,
@ -306,7 +303,7 @@ def test_rag_agent(llama_stack_client, agent_config):
dict(
name="builtin::memory",
args={
"memory_bank_ids": [memory_bank_id],
"vector_db_ids": [vector_db_id],
},
)
],
@ -324,4 +321,4 @@ def test_rag_agent(llama_stack_client, agent_config):
)
logs = [str(log) for log in EventLogger().log(response) if log is not None]
logs_str = "".join(logs)
assert "Tool:query_memory" in logs_str
assert "Tool:rag_tool.query_context" in logs_str

View file

@ -0,0 +1,180 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import random
import pytest
from llama_stack_client.types.tool_runtime import DocumentParam
@pytest.fixture(scope="function")
def empty_vector_db_registry(llama_stack_client):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
for vector_db_id in vector_dbs:
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
@pytest.fixture(scope="function")
def single_entry_vector_db_registry(llama_stack_client, empty_vector_db_registry):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
return vector_dbs
@pytest.fixture(scope="session")
def sample_documents():
return [
DocumentParam(
document_id="test-doc-1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
DocumentParam(
document_id="test-doc-2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
DocumentParam(
document_id="test-doc-3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
DocumentParam(
document_id="test-doc-4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
def assert_valid_response(response):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
def test_vector_db_insert_inline_and_query(
llama_stack_client, single_entry_vector_db_registry, sample_documents
):
vector_db_id = single_entry_vector_db_registry[0]
llama_stack_client.tool_runtime.rag_tool.insert_documents(
documents=sample_documents,
chunk_size_in_tokens=512,
vector_db_id=vector_db_id,
)
# Query with a direct match
query1 = "programming language"
response1 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query=query1,
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Query with semantic similarity
query2 = "AI and brain-inspired computing"
response2 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query=query2,
)
assert_valid_response(response2)
assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks)
# Query with limit on number of results (max_chunks=2)
query3 = "computer"
response3 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query=query3,
params={"max_chunks": 2},
)
assert_valid_response(response3)
assert len(response3.chunks) <= 2
# Query with threshold on similarity score
query4 = "computer"
response4 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query=query4,
params={"score_threshold": 0.01},
)
assert_valid_response(response4)
assert all(score >= 0.01 for score in response4.scores)
def test_vector_db_insert_from_url_and_query(
llama_stack_client, empty_vector_db_registry
):
providers = [p for p in llama_stack_client.providers.list() if p.api == "vector_io"]
assert len(providers) > 0
vector_db_id = "test_vector_db"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
# list to check memory bank is successfully registered
available_vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert vector_db_id in available_vector_dbs
# URLs of documents to insert
# TODO: Move to test/memory/resources then update the url to
# https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/memory/resources/{url}
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
]
documents = [
DocumentParam(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
llama_stack_client.tool_runtime.rag_tool.insert_documents(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
# Query for the name of method
response1 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query="What's the name of the fine-tunning method used?",
)
assert_valid_response(response1)
assert any("lora" in chunk.content.lower() for chunk in response1.chunks)
# Query for the name of model
response2 = llama_stack_client.vector_io.query(
vector_db_id=vector_db_id,
query="Which Llama model is mentioned?",
)
assert_valid_response(response2)
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)

View file

@ -8,251 +8,82 @@ import random
import pytest
from llama_stack.apis.memory import MemoryBankDocument
from llama_stack_client.types.memory_insert_params import Document
@pytest.fixture(scope="function")
def empty_memory_bank_registry(llama_stack_client):
memory_banks = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
def empty_vector_db_registry(llama_stack_client):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
for memory_bank_id in memory_banks:
llama_stack_client.memory_banks.unregister(memory_bank_id=memory_bank_id)
for vector_db_id in vector_dbs:
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
@pytest.fixture(scope="function")
def single_entry_memory_bank_registry(llama_stack_client, empty_memory_bank_registry):
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
llama_stack_client.memory_banks.register(
memory_bank_id=memory_bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
def single_entry_vector_db_registry(llama_stack_client, empty_vector_db_registry):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
memory_banks = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
return memory_banks
return vector_dbs
@pytest.fixture(scope="session")
def sample_documents():
return [
MemoryBankDocument(
document_id="test-doc-1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
document_id="test-doc-2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
document_id="test-doc-3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
document_id="test-doc-4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
def assert_valid_response(response):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
assert chunk.document_id is not None
def test_memory_bank_retrieve(llama_stack_client, empty_memory_bank_registry):
def test_vector_db_retrieve(llama_stack_client, empty_vector_db_registry):
# Register a memory bank first
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
llama_stack_client.memory_banks.register(
memory_bank_id=memory_bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
# Retrieve the memory bank and validate its properties
response = llama_stack_client.memory_banks.retrieve(memory_bank_id=memory_bank_id)
response = llama_stack_client.vector_dbs.retrieve(vector_db_id=vector_db_id)
assert response is not None
assert response.identifier == memory_bank_id
assert response.type == "memory_bank"
assert response.memory_bank_type == "vector"
assert response.identifier == vector_db_id
assert response.embedding_model == "all-MiniLM-L6-v2"
assert response.chunk_size_in_tokens == 512
assert response.overlap_size_in_tokens == 64
assert response.provider_id == "faiss"
assert response.provider_resource_id == memory_bank_id
assert response.provider_resource_id == vector_db_id
def test_memory_bank_list(llama_stack_client, empty_memory_bank_registry):
memory_banks_after_register = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
def test_vector_db_list(llama_stack_client, empty_vector_db_registry):
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(memory_banks_after_register) == 0
assert len(vector_dbs_after_register) == 0
def test_memory_bank_register(llama_stack_client, empty_memory_bank_registry):
memory_provider_id = "faiss"
memory_bank_id = f"test_bank_{random.randint(1000, 9999)}"
llama_stack_client.memory_banks.register(
memory_bank_id=memory_bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=memory_provider_id,
def test_vector_db_register(llama_stack_client, empty_vector_db_registry):
vector_db_id = f"test_vector_db_{random.randint(1000, 9999)}"
llama_stack_client.vector_dbs.register(
vector_db_id=vector_db_id,
embedding_model="all-MiniLM-L6-v2",
embedding_dimension=384,
provider_id="faiss",
)
memory_banks_after_register = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
vector_dbs_after_register = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert memory_banks_after_register == [memory_bank_id]
assert vector_dbs_after_register == [vector_db_id]
def test_memory_bank_unregister(llama_stack_client, single_entry_memory_bank_registry):
memory_banks = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
def test_vector_db_unregister(llama_stack_client, single_entry_vector_db_registry):
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(memory_banks) == 1
assert len(vector_dbs) == 1
memory_bank_id = memory_banks[0]
llama_stack_client.memory_banks.unregister(memory_bank_id=memory_bank_id)
vector_db_id = vector_dbs[0]
llama_stack_client.vector_dbs.unregister(vector_db_id=vector_db_id)
memory_banks = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
vector_dbs = [
vector_db.identifier for vector_db in llama_stack_client.vector_dbs.list()
]
assert len(memory_banks) == 0
def test_memory_bank_insert_inline_and_query(
llama_stack_client, single_entry_memory_bank_registry, sample_documents
):
memory_bank_id = single_entry_memory_bank_registry[0]
llama_stack_client.memory.insert(
bank_id=memory_bank_id,
documents=sample_documents,
)
# Query with a direct match
query1 = "programming language"
response1 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query=query1,
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Query with semantic similarity
query2 = "AI and brain-inspired computing"
response2 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query=query2,
)
assert_valid_response(response2)
assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks)
# Query with limit on number of results (max_chunks=2)
query3 = "computer"
response3 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query=query3,
params={"max_chunks": 2},
)
assert_valid_response(response3)
assert len(response3.chunks) <= 2
# Query with threshold on similarity score
query4 = "computer"
response4 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query=query4,
params={"score_threshold": 0.01},
)
assert_valid_response(response4)
assert all(score >= 0.01 for score in response4.scores)
def test_memory_bank_insert_from_url_and_query(
llama_stack_client, empty_memory_bank_registry
):
providers = [p for p in llama_stack_client.providers.list() if p.api == "memory"]
assert len(providers) > 0
memory_provider_id = providers[0].provider_id
memory_bank_id = "test_bank"
llama_stack_client.memory_banks.register(
memory_bank_id=memory_bank_id,
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=memory_provider_id,
)
# list to check memory bank is successfully registered
available_memory_banks = [
memory_bank.identifier for memory_bank in llama_stack_client.memory_banks.list()
]
assert memory_bank_id in available_memory_banks
# URLs of documents to insert
# TODO: Move to test/memory/resources then update the url to
# https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/memory/resources/{url}
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
]
documents = [
Document(
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={},
)
for i, url in enumerate(urls)
]
llama_stack_client.memory.insert(
bank_id=memory_bank_id,
documents=documents,
)
# Query for the name of method
response1 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query="What's the name of the fine-tunning method used?",
)
assert_valid_response(response1)
assert any("lora" in chunk.content.lower() for chunk in response1.chunks)
# Query for the name of model
response2 = llama_stack_client.memory.query(
bank_id=memory_bank_id,
query="Which Llama model is mentioned?",
)
assert_valid_response(response1)
assert any("llama2" in chunk.content.lower() for chunk in response2.chunks)
assert len(vector_dbs) == 0