Merge branch 'main' into HuggingfacePostTrainingConfig-branch

This commit is contained in:
sarthakdeshpande 2025-08-14 12:36:36 +05:30
commit 6520a6d39a
66 changed files with 2913 additions and 434 deletions

View file

@ -327,10 +327,21 @@ class MetaReferenceAgentsImpl(Agents):
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
) -> OpenAIResponseObject:
return await self.openai_responses_impl.create_openai_response(
input, model, instructions, previous_response_id, store, stream, temperature, text, tools, max_infer_iters
input,
model,
instructions,
previous_response_id,
store,
stream,
temperature,
text,
tools,
include,
max_infer_iters,
)
async def list_openai_responses(

View file

@ -20,6 +20,7 @@ from llama_stack.apis.agents.openai_responses import (
ListOpenAIResponseInputItem,
ListOpenAIResponseObject,
OpenAIDeleteResponseObject,
OpenAIResponseContentPartOutputText,
OpenAIResponseInput,
OpenAIResponseInputFunctionToolCallOutput,
OpenAIResponseInputMessageContent,
@ -32,12 +33,27 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseContentPartAdded,
OpenAIResponseObjectStreamResponseContentPartDone,
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta,
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone,
OpenAIResponseObjectStreamResponseMcpCallCompleted,
OpenAIResponseObjectStreamResponseMcpCallFailed,
OpenAIResponseObjectStreamResponseMcpCallInProgress,
OpenAIResponseObjectStreamResponseOutputItemAdded,
OpenAIResponseObjectStreamResponseOutputItemDone,
OpenAIResponseObjectStreamResponseOutputTextDelta,
OpenAIResponseObjectStreamResponseWebSearchCallCompleted,
OpenAIResponseObjectStreamResponseWebSearchCallInProgress,
OpenAIResponseObjectStreamResponseWebSearchCallSearching,
OpenAIResponseOutput,
OpenAIResponseOutputMessageContent,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFileSearchToolCallResults,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
@ -72,7 +88,9 @@ from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
from llama_stack.providers.utils.inference.openai_compat import (
convert_tooldef_to_openai_tool,
)
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
logger = get_logger(name=__name__, category="openai_responses")
@ -80,8 +98,17 @@ logger = get_logger(name=__name__, category="openai_responses")
OPENAI_RESPONSES_PREFIX = "openai_responses:"
class ToolExecutionResult(BaseModel):
"""Result of streaming tool execution."""
stream_event: OpenAIResponseObjectStream | None = None
sequence_number: int
final_output_message: OpenAIResponseOutput | None = None
final_input_message: OpenAIMessageParam | None = None
async def _convert_response_content_to_chat_content(
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent],
content: (str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]),
) -> str | list[OpenAIChatCompletionContentPartParam]:
"""
Convert the content parts from an OpenAI Response API request into OpenAI Chat Completion content parts.
@ -149,7 +176,9 @@ async def _convert_response_input_to_chat_messages(
return messages
async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> OpenAIResponseMessage:
async def _convert_chat_choice_to_response_message(
choice: OpenAIChoice,
) -> OpenAIResponseMessage:
"""
Convert an OpenAI Chat Completion choice into an OpenAI Response output message.
"""
@ -171,7 +200,9 @@ async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> Open
)
async def _convert_response_text_to_chat_response_format(text: OpenAIResponseText) -> OpenAIResponseFormatParam:
async def _convert_response_text_to_chat_response_format(
text: OpenAIResponseText,
) -> OpenAIResponseFormatParam:
"""
Convert an OpenAI Response text parameter into an OpenAI Chat Completion response format.
"""
@ -227,7 +258,9 @@ class OpenAIResponsesImpl:
self.vector_io_api = vector_io_api
async def _prepend_previous_response(
self, input: str | list[OpenAIResponseInput], previous_response_id: str | None = None
self,
input: str | list[OpenAIResponseInput],
previous_response_id: str | None = None,
):
if previous_response_id:
previous_response_with_input = await self.responses_store.get_response_object(previous_response_id)
@ -333,6 +366,7 @@ class OpenAIResponsesImpl:
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10,
):
stream = bool(stream)
@ -444,6 +478,10 @@ class OpenAIResponsesImpl:
# Create a placeholder message item for delta events
message_item_id = f"msg_{uuid.uuid4()}"
# Track tool call items for streaming events
tool_call_item_ids: dict[int, str] = {}
# Track content parts for streaming events
content_part_emitted = False
async for chunk in completion_result:
chat_response_id = chunk.id
@ -452,6 +490,18 @@ class OpenAIResponsesImpl:
for chunk_choice in chunk.choices:
# Emit incremental text content as delta events
if chunk_choice.delta.content:
# Emit content_part.added event for first text chunk
if not content_part_emitted:
content_part_emitted = True
sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartAdded(
response_id=response_id,
item_id=message_item_id,
part=OpenAIResponseContentPartOutputText(
text="", # Will be filled incrementally via text deltas
),
sequence_number=sequence_number,
)
sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=0,
@ -470,24 +520,117 @@ class OpenAIResponsesImpl:
if chunk_choice.delta.tool_calls:
for tool_call in chunk_choice.delta.tool_calls:
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
if response_tool_call:
# Don't attempt to concatenate arguments if we don't have any new argumentsAdd commentMore actions
if tool_call.function.arguments:
# Guard against an initial None argument before we concatenate
response_tool_call.function.arguments = (
response_tool_call.function.arguments or ""
) + tool_call.function.arguments
else:
# Create new tool call entry if this is the first chunk for this index
is_new_tool_call = response_tool_call is None
if is_new_tool_call:
tool_call_dict: dict[str, Any] = tool_call.model_dump()
tool_call_dict.pop("type", None)
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
chat_response_tool_calls[tool_call.index] = response_tool_call
chat_response_tool_calls[tool_call.index] = response_tool_call
# Create item ID for this tool call for streaming events
tool_call_item_id = f"fc_{uuid.uuid4()}"
tool_call_item_ids[tool_call.index] = tool_call_item_id
# Emit output_item.added event for the new function call
sequence_number += 1
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
arguments="", # Will be filled incrementally via delta events
call_id=tool_call.id or "",
name=tool_call.function.name if tool_call.function else "",
id=tool_call_item_id,
status="in_progress",
)
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
response_id=response_id,
item=function_call_item,
output_index=len(output_messages),
sequence_number=sequence_number,
)
# Stream tool call arguments as they arrive (differentiate between MCP and function calls)
if tool_call.function and tool_call.function.arguments:
tool_call_item_id = tool_call_item_ids[tool_call.index]
sequence_number += 1
# Check if this is an MCP tool call
is_mcp_tool = (
ctx.mcp_tool_to_server
and tool_call.function.name
and tool_call.function.name in ctx.mcp_tool_to_server
)
if is_mcp_tool:
# Emit MCP-specific argument delta event
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(
delta=tool_call.function.arguments,
item_id=tool_call_item_id,
output_index=len(output_messages),
sequence_number=sequence_number,
)
else:
# Emit function call argument delta event
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
delta=tool_call.function.arguments,
item_id=tool_call_item_id,
output_index=len(output_messages),
sequence_number=sequence_number,
)
# Accumulate arguments for final response (only for subsequent chunks)
if not is_new_tool_call:
response_tool_call.function.arguments = (
response_tool_call.function.arguments or ""
) + tool_call.function.arguments
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
for tool_call_index in sorted(chat_response_tool_calls.keys()):
tool_call_item_id = tool_call_item_ids[tool_call_index]
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
tool_call_name = chat_response_tool_calls[tool_call_index].function.name
# Check if this is an MCP tool call
is_mcp_tool = ctx.mcp_tool_to_server and tool_call_name and tool_call_name in ctx.mcp_tool_to_server
sequence_number += 1
if is_mcp_tool:
# Emit MCP-specific argument done event
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(
arguments=final_arguments,
item_id=tool_call_item_id,
output_index=len(output_messages),
sequence_number=sequence_number,
)
else:
# Emit function call argument done event
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(
arguments=final_arguments,
item_id=tool_call_item_id,
output_index=len(output_messages),
sequence_number=sequence_number,
)
# Convert collected chunks to complete response
if chat_response_tool_calls:
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
else:
tool_calls = None
# Emit content_part.done event if text content was streamed (before content gets cleared)
if content_part_emitted:
final_text = "".join(chat_response_content)
sequence_number += 1
yield OpenAIResponseObjectStreamResponseContentPartDone(
response_id=response_id,
item_id=message_item_id,
part=OpenAIResponseContentPartOutputText(
text=final_text,
),
sequence_number=sequence_number,
)
# Clear content when there are tool calls (OpenAI spec behavior)
if chat_response_tool_calls:
chat_response_content = []
assistant_message = OpenAIAssistantMessageParam(
content="".join(chat_response_content),
tool_calls=tool_calls,
@ -523,21 +666,78 @@ class OpenAIResponsesImpl:
# execute non-function tool calls
for tool_call in non_function_tool_calls:
tool_call_log, tool_response_message = await self._execute_tool_call(tool_call, ctx)
# Find the item_id for this tool call
matching_item_id = None
for index, item_id in tool_call_item_ids.items():
response_tool_call = chat_response_tool_calls.get(index)
if response_tool_call and response_tool_call.id == tool_call.id:
matching_item_id = item_id
break
# Use a fallback item_id if not found
if not matching_item_id:
matching_item_id = f"tc_{uuid.uuid4()}"
# Execute tool call with streaming
tool_call_log = None
tool_response_message = None
async for result in self._execute_tool_call(
tool_call, ctx, sequence_number, response_id, len(output_messages), matching_item_id
):
if result.stream_event:
# Forward streaming events
sequence_number = result.sequence_number
yield result.stream_event
if result.final_output_message is not None:
tool_call_log = result.final_output_message
tool_response_message = result.final_input_message
sequence_number = result.sequence_number
if tool_call_log:
output_messages.append(tool_call_log)
# Emit output_item.done event for completed non-function tool call
if matching_item_id:
sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=response_id,
item=tool_call_log,
output_index=len(output_messages) - 1,
sequence_number=sequence_number,
)
if tool_response_message:
next_turn_messages.append(tool_response_message)
for tool_call in function_tool_calls:
output_messages.append(
OpenAIResponseOutputMessageFunctionToolCall(
arguments=tool_call.function.arguments or "",
call_id=tool_call.id,
name=tool_call.function.name or "",
id=f"fc_{uuid.uuid4()}",
status="completed",
)
# Find the item_id for this tool call from our tracking dictionary
matching_item_id = None
for index, item_id in tool_call_item_ids.items():
response_tool_call = chat_response_tool_calls.get(index)
if response_tool_call and response_tool_call.id == tool_call.id:
matching_item_id = item_id
break
# Use existing item_id or create new one if not found
final_item_id = matching_item_id or f"fc_{uuid.uuid4()}"
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
arguments=tool_call.function.arguments or "",
call_id=tool_call.id,
name=tool_call.function.name or "",
id=final_item_id,
status="completed",
)
output_messages.append(function_call_item)
# Emit output_item.done event for completed function call
sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputItemDone(
response_id=response_id,
item=function_call_item,
output_index=len(output_messages) - 1,
sequence_number=sequence_number,
)
if not function_tool_calls and not non_function_tool_calls:
@ -746,7 +946,11 @@ class OpenAIResponsesImpl:
self,
tool_call: OpenAIChatCompletionToolCall,
ctx: ChatCompletionContext,
) -> tuple[OpenAIResponseOutput | None, OpenAIMessageParam | None]:
sequence_number: int,
response_id: str,
output_index: int,
item_id: str,
) -> AsyncIterator[ToolExecutionResult]:
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
@ -756,8 +960,41 @@ class OpenAIResponsesImpl:
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
if not function or not tool_call_id or not function.name:
return None, None
yield ToolExecutionResult(sequence_number=sequence_number)
return
# Emit in_progress event based on tool type (only for tools with specific streaming events)
progress_event = None
if ctx.mcp_tool_to_server and function.name in ctx.mcp_tool_to_server:
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseMcpCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
elif function.name == "web_search":
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseWebSearchCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
# Note: knowledge_search and other custom tools don't have specific streaming events in OpenAI spec
if progress_event:
yield ToolExecutionResult(stream_event=progress_event, sequence_number=sequence_number)
# For web search, emit searching event
if function.name == "web_search":
sequence_number += 1
searching_event = OpenAIResponseObjectStreamResponseWebSearchCallSearching(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
# Execute the actual tool call
error_exc = None
result = None
try:
@ -773,7 +1010,8 @@ class OpenAIResponsesImpl:
)
elif function.name == "knowledge_search":
response_file_search_tool = next(
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)), None
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
None,
)
if response_file_search_tool:
# Use vector_stores.search API instead of knowledge_search tool
@ -791,8 +1029,37 @@ class OpenAIResponsesImpl:
except Exception as e:
error_exc = e
# Emit completion or failure event based on result (only for tools with specific streaming events)
has_error = error_exc or (result and ((result.error_code and result.error_code > 0) or result.error_message))
completion_event = None
if ctx.mcp_tool_to_server and function.name in ctx.mcp_tool_to_server:
sequence_number += 1
if has_error:
completion_event = OpenAIResponseObjectStreamResponseMcpCallFailed(
sequence_number=sequence_number,
)
else:
completion_event = OpenAIResponseObjectStreamResponseMcpCallCompleted(
sequence_number=sequence_number,
)
elif function.name == "web_search":
sequence_number += 1
completion_event = OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
# Note: knowledge_search and other custom tools don't have specific completion events in OpenAI spec
if completion_event:
yield ToolExecutionResult(stream_event=completion_event, sequence_number=sequence_number)
# Build the result message and input message
if function.name in ctx.mcp_tool_to_server:
from llama_stack.apis.agents.openai_responses import OpenAIResponseOutputMessageMCPCall
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageMCPCall,
)
message = OpenAIResponseOutputMessageMCPCall(
id=tool_call_id,
@ -802,9 +1069,9 @@ class OpenAIResponsesImpl:
)
if error_exc:
message.error = str(error_exc)
elif (result.error_code and result.error_code > 0) or result.error_message:
elif (result and result.error_code and result.error_code > 0) or (result and result.error_message):
message.error = f"Error (code {result.error_code}): {result.error_message}"
elif result.content:
elif result and result.content:
message.output = interleaved_content_as_str(result.content)
else:
if function.name == "web_search":
@ -812,7 +1079,7 @@ class OpenAIResponsesImpl:
id=tool_call_id,
status="completed",
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
if has_error:
message.status = "failed"
elif function.name == "knowledge_search":
message = OpenAIResponseOutputMessageFileSearchToolCall(
@ -820,20 +1087,21 @@ class OpenAIResponsesImpl:
queries=[tool_kwargs.get("query", "")],
status="completed",
)
if "document_ids" in result.metadata:
if result and "document_ids" in result.metadata:
message.results = []
for i, doc_id in enumerate(result.metadata["document_ids"]):
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
score = result.metadata["scores"][i] if "scores" in result.metadata else None
message.results.append(
{
"file_id": doc_id,
"filename": doc_id,
"text": text,
"score": score,
}
OpenAIResponseOutputMessageFileSearchToolCallResults(
file_id=doc_id,
filename=doc_id,
text=text,
score=score,
attributes={},
)
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
if has_error:
message.status = "failed"
else:
raise ValueError(f"Unknown tool {function.name} called")
@ -843,7 +1111,10 @@ class OpenAIResponsesImpl:
if isinstance(result.content, str):
content = result.content
elif isinstance(result.content, list):
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
from llama_stack.apis.common.content_types import (
ImageContentItem,
TextContentItem,
)
content = []
for item in result.content:
@ -862,10 +1133,13 @@ class OpenAIResponsesImpl:
raise ValueError(f"Unknown result content type: {type(result.content)}")
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
else:
text = str(error_exc)
text = str(error_exc) if error_exc else "Tool execution failed"
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
return message, input_message
# Yield the final result
yield ToolExecutionResult(
sequence_number=sequence_number, final_output_message=message, final_input_message=input_message
)
def _is_function_tool_call(

View file

@ -191,7 +191,11 @@ class AgentPersistence:
sessions = []
for value in values:
try:
session_info = Session(**json.loads(value))
data = json.loads(value)
if "turn_id" in data:
continue
session_info = Session(**data)
sessions.append(session_info)
except Exception as e:
log.error(f"Error parsing session info: {e}")

View file

@ -22,7 +22,7 @@ from llama_stack.apis.safety import (
SafetyViolation,
ViolationLevel,
)
from llama_stack.apis.safety.safety import ModerationObject, ModerationObjectResults, OpenAICategories
from llama_stack.apis.safety.safety import ModerationObject, ModerationObjectResults
from llama_stack.apis.shields import Shield
from llama_stack.core.datatypes import Api
from llama_stack.models.llama.datatypes import Role
@ -72,30 +72,6 @@ SAFETY_CATEGORIES_TO_CODE_MAP = {
}
SAFETY_CODE_TO_CATEGORIES_MAP = {v: k for k, v in SAFETY_CATEGORIES_TO_CODE_MAP.items()}
OPENAI_TO_LLAMA_CATEGORIES_MAP = {
OpenAICategories.VIOLENCE: [CAT_VIOLENT_CRIMES],
OpenAICategories.VIOLENCE_GRAPHIC: [CAT_VIOLENT_CRIMES],
OpenAICategories.HARRASMENT: [CAT_CHILD_EXPLOITATION],
OpenAICategories.HARRASMENT_THREATENING: [CAT_VIOLENT_CRIMES, CAT_CHILD_EXPLOITATION],
OpenAICategories.HATE: [CAT_HATE],
OpenAICategories.HATE_THREATENING: [CAT_HATE, CAT_VIOLENT_CRIMES],
OpenAICategories.ILLICIT: [CAT_NON_VIOLENT_CRIMES],
OpenAICategories.ILLICIT_VIOLENT: [CAT_VIOLENT_CRIMES, CAT_INDISCRIMINATE_WEAPONS],
OpenAICategories.SEXUAL: [CAT_SEX_CRIMES, CAT_SEXUAL_CONTENT],
OpenAICategories.SEXUAL_MINORS: [CAT_CHILD_EXPLOITATION],
OpenAICategories.SELF_HARM: [CAT_SELF_HARM],
OpenAICategories.SELF_HARM_INTENT: [CAT_SELF_HARM],
OpenAICategories.SELF_HARM_INSTRUCTIONS: [CAT_SELF_HARM, CAT_SPECIALIZED_ADVICE],
# These are custom categories that are not in the OpenAI moderation categories
"custom/defamation": [CAT_DEFAMATION],
"custom/specialized_advice": [CAT_SPECIALIZED_ADVICE],
"custom/privacy_violation": [CAT_PRIVACY],
"custom/intellectual_property": [CAT_INTELLECTUAL_PROPERTY],
"custom/weapons": [CAT_INDISCRIMINATE_WEAPONS],
"custom/elections": [CAT_ELECTIONS],
"custom/code_interpreter_abuse": [CAT_CODE_INTERPRETER_ABUSE],
}
DEFAULT_LG_V3_SAFETY_CATEGORIES = [
CAT_VIOLENT_CRIMES,
@ -424,9 +400,9 @@ class LlamaGuardShield:
ModerationObject with appropriate configuration
"""
# Set default values for safe case
categories = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), False)
category_scores = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), 1.0)
category_applied_input_types = {key: [] for key in OPENAI_TO_LLAMA_CATEGORIES_MAP.keys()}
categories = dict.fromkeys(SAFETY_CATEGORIES_TO_CODE_MAP.keys(), False)
category_scores = dict.fromkeys(SAFETY_CATEGORIES_TO_CODE_MAP.keys(), 1.0)
category_applied_input_types = {key: [] for key in SAFETY_CATEGORIES_TO_CODE_MAP.keys()}
flagged = False
user_message = None
metadata = {}
@ -453,19 +429,15 @@ class LlamaGuardShield:
],
)
# Get OpenAI categories for the unsafe codes
openai_categories = []
for code in unsafe_code_list:
llama_guard_category = SAFETY_CODE_TO_CATEGORIES_MAP[code]
openai_categories.extend(
k for k, v_l in OPENAI_TO_LLAMA_CATEGORIES_MAP.items() if llama_guard_category in v_l
)
llama_guard_category = [SAFETY_CODE_TO_CATEGORIES_MAP[code] for code in unsafe_code_list]
# Update categories for unsafe content
categories = {k: k in openai_categories for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
category_scores = {k: 1.0 if k in openai_categories else 0.0 for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
categories = {k: k in llama_guard_category for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()}
category_scores = {
k: 1.0 if k in llama_guard_category else 0.0 for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()
}
category_applied_input_types = {
k: ["text"] if k in openai_categories else [] for k in OPENAI_TO_LLAMA_CATEGORIES_MAP
k: ["text"] if k in llama_guard_category else [] for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()
}
flagged = True
user_message = CANNED_RESPONSE_TEXT

View file

@ -18,6 +18,7 @@ from llama_stack.apis.safety import (
ShieldStore,
ViolationLevel,
)
from llama_stack.apis.safety.safety import ModerationObject
from llama_stack.apis.shields import Shield
from llama_stack.core.utils.model_utils import model_local_dir
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
@ -64,8 +65,8 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
return await self.shield.run(messages)
async def run_moderation(self, input: str | list[str], model: str):
raise NotImplementedError("run_moderation not implemented for PromptGuard")
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
raise NotImplementedError("run_moderation is not implemented for Prompt Guard")
class PromptGuardShield:

View file

@ -33,6 +33,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -128,11 +129,12 @@ class FaissIndex(EmbeddingIndex):
# Save updated index
await self._save_index()
async def delete_chunk(self, chunk_id: str) -> None:
if chunk_id not in self.chunk_ids:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
if not set(chunk_ids).issubset(self.chunk_ids):
return
async with self.chunk_id_lock:
def remove_chunk(chunk_id: str):
index = self.chunk_ids.index(chunk_id)
self.index.remove_ids(np.array([index]))
@ -146,6 +148,10 @@ class FaissIndex(EmbeddingIndex):
self.chunk_by_index = new_chunk_by_index
self.chunk_ids.pop(index)
async with self.chunk_id_lock:
for chunk_id in chunk_ids:
remove_chunk(chunk_id)
await self._save_index()
async def query_vector(
@ -297,8 +303,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a faiss index"""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a faiss index"""
faiss_index = self.cache[store_id].index
for chunk_id in chunk_ids:
await faiss_index.delete_chunk(chunk_id)
await faiss_index.delete_chunks(chunks_for_deletion)

View file

@ -31,6 +31,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
RERANKER_TYPE_WEIGHTED,
ChunkForDeletion,
EmbeddingIndex,
VectorDBWithIndex,
)
@ -426,34 +427,36 @@ class SQLiteVecIndex(EmbeddingIndex):
return QueryChunksResponse(chunks=chunks, scores=scores)
async def delete_chunk(self, chunk_id: str) -> None:
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Remove a chunk from the SQLite vector store."""
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
def _delete_chunk():
def _delete_chunks():
connection = _create_sqlite_connection(self.db_path)
cur = connection.cursor()
try:
cur.execute("BEGIN TRANSACTION")
# Delete from metadata table
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
placeholders = ",".join("?" * len(chunk_ids))
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from vector table
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.vector_table} WHERE id IN ({placeholders})", chunk_ids)
# Delete from FTS table
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
cur.execute(f"DELETE FROM {self.fts_table} WHERE id IN ({placeholders})", chunk_ids)
connection.commit()
except Exception as e:
connection.rollback()
logger.error(f"Error deleting chunk {chunk_id}: {e}")
logger.error(f"Error deleting chunks: {e}")
raise
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete_chunk)
await asyncio.to_thread(_delete_chunks)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
@ -551,12 +554,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a sqlite_vec index."""
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
"""Delete chunks from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id)
if not index:
raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids:
# Use the index's delete_chunk method
await index.index.delete_chunk(chunk_id)
await index.index.delete_chunks(chunks_for_deletion)