Implement retrieving vector store file contents

This requires some more bookkeeping data, some additional storage (of
the chunks we created for this file), and is implemented for faiss and sqlite-vec.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-06-18 12:25:27 -04:00
parent a2f0f608db
commit 65869d22a4
11 changed files with 372 additions and 5 deletions

View file

@ -12,7 +12,9 @@ import uuid
from abc import ABC, abstractmethod
from typing import Any
from llama_stack.apis.common.content_types import InterleavedContentItem, TextContentItem
from llama_stack.apis.files import Files
from llama_stack.apis.files.files import OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
QueryChunksResponse,
@ -29,6 +31,7 @@ from llama_stack.apis.vector_io.vector_io import (
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyAuto,
VectorStoreChunkingStrategyStatic,
VectorStoreFileContentsResponse,
VectorStoreFileCounts,
VectorStoreFileDeleteResponse,
VectorStoreFileLastError,
@ -75,7 +78,9 @@ class OpenAIVectorStoreMixin(ABC):
pass
@abstractmethod
async def _save_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
async def _save_openai_vector_store_file(
self, store_id: str, file_id: str, file_info: dict[str, Any], file_contents: list[dict[str, Any]]
) -> None:
"""Save vector store file metadata to persistent storage."""
pass
@ -84,6 +89,11 @@ class OpenAIVectorStoreMixin(ABC):
"""Load vector store file metadata from persistent storage."""
pass
@abstractmethod
async def _load_openai_vector_store_file_contents(self, store_id: str, file_id: str) -> list[dict[str, Any]]:
"""Load vector store file contents from persistent storage."""
pass
@abstractmethod
async def _update_openai_vector_store_file(self, store_id: str, file_id: str, file_info: dict[str, Any]) -> None:
"""Update vector store file metadata in persistent storage."""
@ -491,6 +501,8 @@ class OpenAIVectorStoreMixin(ABC):
attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
created_at = int(time.time())
chunks: list[Chunk] = []
file_response: OpenAIFileObject | None = None
vector_store_file_object = VectorStoreFileObject(
id=file_id,
@ -554,9 +566,11 @@ class OpenAIVectorStoreMixin(ABC):
# Create OpenAI vector store file metadata
file_info = vector_store_file_object.model_dump(exclude={"last_error"})
file_info["filename"] = file_response.filename if file_response else ""
# Save vector store file to persistent storage (provider-specific)
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info)
dict_chunks = [c.model_dump() for c in chunks]
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info, dict_chunks)
# Update file_ids and file_counts in vector store metadata
store_info = self.openai_vector_stores[vector_store_id].copy()
@ -608,6 +622,34 @@ class OpenAIVectorStoreMixin(ABC):
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
return VectorStoreFileObject(**file_info)
async def openai_retrieve_vector_store_file_contents(
self,
vector_store_id: str,
file_id: str,
) -> VectorStoreFileContentsResponse:
"""Retrieves the contents of a vector store file."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks]
contents: list[InterleavedContentItem] = []
for chunk in chunks:
content = chunk.content
if isinstance(content, str):
contents.append(TextContentItem(text=content))
elif isinstance(content, InterleavedContentItem):
contents.append(content)
else:
contents.extend(contents)
return VectorStoreFileContentsResponse(
file_id=file_id,
filename=file_info.get("filename", ""),
attributes=file_info.get("attributes", {}),
content=contents,
)
async def openai_update_vector_store_file(
self,
vector_store_id: str,