diff --git a/distributions/dependencies.json b/distributions/dependencies.json index 2b2e35a50..162fe1ca6 100644 --- a/distributions/dependencies.json +++ b/distributions/dependencies.json @@ -27,7 +27,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "hf-serverless": [ "aiohttp", @@ -62,7 +62,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "together": [ "aiosqlite", @@ -96,7 +96,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "vllm-gpu": [ "aiosqlite", @@ -130,7 +130,7 @@ "uvicorn", "vllm", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "remote-vllm": [ "aiosqlite", @@ -163,7 +163,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "fireworks": [ "aiosqlite", @@ -197,7 +197,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "tgi": [ "aiohttp", @@ -232,7 +232,41 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" + ], + "dell": [ + "aiohttp", + "aiosqlite", + "autoevals", + "blobfile", + "chardet", + "chromadb-client", + "datasets", + "faiss-cpu", + "fastapi", + "fire", + "httpx", + "huggingface_hub", + "matplotlib", + "nltk", + "numpy", + "openai", + "opentelemetry-exporter-otlp-proto-http", + "opentelemetry-sdk", + "pandas", + "pillow", + "psycopg2-binary", + "pypdf", + "redis", + "requests", + "scikit-learn", + "scipy", + "sentencepiece", + "tqdm", + "transformers", + "uvicorn", + "sentence-transformers --no-deps", + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "bedrock": [ "aiosqlite", @@ -266,7 +300,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "meta-reference-gpu": [ "accelerate", @@ -306,7 +340,7 @@ "uvicorn", "zmq", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "nvidia": [ "aiosqlite", @@ -338,7 +372,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "meta-reference-quantized-gpu": [ "accelerate", @@ -380,7 +414,7 @@ "uvicorn", "zmq", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "cerebras": [ "aiosqlite", @@ -413,7 +447,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "ollama": [ "aiohttp", @@ -447,7 +481,7 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ], "hf-endpoint": [ "aiohttp", @@ -482,6 +516,6 @@ "transformers", "uvicorn", "sentence-transformers --no-deps", - "torch --index-url https://download.pytorch.org/whl/cpu" + "torch torchvision --index-url https://download.pytorch.org/whl/cpu" ] } diff --git a/docs/source/distributions/self_hosted_distro/dell.md b/docs/source/distributions/self_hosted_distro/dell.md new file mode 100644 index 000000000..926409ad3 --- /dev/null +++ b/docs/source/distributions/self_hosted_distro/dell.md @@ -0,0 +1,144 @@ +--- +orphan: true +--- + +# Dell Distribution of Llama Stack + +```{toctree} +:maxdepth: 2 +:hidden: + +self +``` + +The `llamastack/distribution-dell` distribution consists of the following provider configurations. + +| API | Provider(s) | +|-----|-------------| +| agents | `inline::meta-reference` | +| datasetio | `remote::huggingface`, `inline::localfs` | +| eval | `inline::meta-reference` | +| inference | `remote::tgi` | +| safety | `inline::llama-guard` | +| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` | +| telemetry | `inline::meta-reference` | +| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` | +| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` | + + +You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference. + +### Environment Variables + +The following environment variables can be configured: + +- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8080`) +- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8081`) +- `CHROMA_URL`: URL for the Chroma server (default: `http://0.0.0.0:8000`) +- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`) +- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`) + + +## Setting up TGI server + +Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker: + +```bash +export INFERENCE_PORT=8080 +export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct +export CUDA_VISIBLE_DEVICES=0 + +docker run --rm -it \ + -v $HOME/.cache/huggingface:/data \ + -p $INFERENCE_PORT:$INFERENCE_PORT \ + --gpus $CUDA_VISIBLE_DEVICES \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ + --dtype bfloat16 \ + --usage-stats off \ + --sharded false \ + --cuda-memory-fraction 0.7 \ + --model-id $INFERENCE_MODEL \ + --port $INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: + +```bash +export SAFETY_PORT=8081 +export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B +export CUDA_VISIBLE_DEVICES=1 + +docker run --rm -it \ + -v $HOME/.cache/huggingface:/data \ + -p $SAFETY_PORT:$SAFETY_PORT \ + --gpus $CUDA_VISIBLE_DEVICES \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ + --dtype bfloat16 \ + --usage-stats off \ + --sharded false \ + --model-id $SAFETY_MODEL \ + --port $SAFETY_PORT +``` + +## Running Llama Stack + +Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. + +### Via Docker + +This method allows you to get started quickly without having to build the distribution code. + +```bash +LLAMA_STACK_PORT=5001 +docker run \ + -it \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + llamastack/distribution-dell \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, use: + +```bash +# You need a local checkout of llama-stack to run this, get it using +# git clone https://github.com/meta-llama/llama-stack.git +cd /path/to/llama-stack + +docker run \ + -it \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + -v ~/.llama:/root/.llama \ + -v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \ + llamastack/distribution-dell \ + --yaml-config /root/my-run.yaml \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \ + --env SAFETY_MODEL=$SAFETY_MODEL \ + --env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT +``` + +### Via Conda + +Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. + +```bash +llama stack build --template dell --image-type conda +llama stack run ./run.yaml + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, use: + +```bash +llama stack run ./run-with-safety.yaml \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \ + --env SAFETY_MODEL=$SAFETY_MODEL \ + --env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT +``` diff --git a/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md b/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md index a371011fe..9772c6b26 100644 --- a/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md +++ b/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md @@ -82,7 +82,7 @@ docker run \ ### Via Conda -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template meta-reference-gpu --image-type conda diff --git a/docs/source/distributions/self_hosted_distro/meta-reference-quantized-gpu.md b/docs/source/distributions/self_hosted_distro/meta-reference-quantized-gpu.md index a32ccb65e..9a5a94ba0 100644 --- a/docs/source/distributions/self_hosted_distro/meta-reference-quantized-gpu.md +++ b/docs/source/distributions/self_hosted_distro/meta-reference-quantized-gpu.md @@ -82,7 +82,7 @@ docker run \ ### Via Conda -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template meta-reference-quantized-gpu --image-type conda diff --git a/docs/source/distributions/self_hosted_distro/ollama.md b/docs/source/distributions/self_hosted_distro/ollama.md index 92e1f7dbf..1a2446621 100644 --- a/docs/source/distributions/self_hosted_distro/ollama.md +++ b/docs/source/distributions/self_hosted_distro/ollama.md @@ -101,7 +101,7 @@ docker run \ ### Via Conda -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash export LLAMA_STACK_PORT=5001 diff --git a/docs/source/distributions/self_hosted_distro/remote-vllm.md b/docs/source/distributions/self_hosted_distro/remote-vllm.md index b2d28be1b..6b2db652e 100644 --- a/docs/source/distributions/self_hosted_distro/remote-vllm.md +++ b/docs/source/distributions/self_hosted_distro/remote-vllm.md @@ -131,7 +131,7 @@ docker run \ ### Via Conda -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash export INFERENCE_PORT=8000 diff --git a/docs/source/distributions/self_hosted_distro/tgi.md b/docs/source/distributions/self_hosted_distro/tgi.md index ba5dee77f..f74e36472 100644 --- a/docs/source/distributions/self_hosted_distro/tgi.md +++ b/docs/source/distributions/self_hosted_distro/tgi.md @@ -122,7 +122,7 @@ docker run \ ### Via Conda -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template tgi --image-type conda diff --git a/llama_stack/providers/remote/inference/nvidia/nvidia.py b/llama_stack/providers/remote/inference/nvidia/nvidia.py index 69533491e..b9b43006c 100644 --- a/llama_stack/providers/remote/inference/nvidia/nvidia.py +++ b/llama_stack/providers/remote/inference/nvidia/nvidia.py @@ -26,6 +26,7 @@ from llama_stack.apis.inference import ( Message, ResponseFormat, ToolChoice, + ToolConfig, ) from llama_stack.providers.utils.inference.model_registry import ( build_model_alias, diff --git a/llama_stack/templates/dell/__init__.py b/llama_stack/templates/dell/__init__.py new file mode 100644 index 000000000..143add56e --- /dev/null +++ b/llama_stack/templates/dell/__init__.py @@ -0,0 +1,7 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from .dell import get_distribution_template # noqa: F401 diff --git a/llama_stack/templates/dell/build.yaml b/llama_stack/templates/dell/build.yaml new file mode 100644 index 000000000..e2edb9386 --- /dev/null +++ b/llama_stack/templates/dell/build.yaml @@ -0,0 +1,32 @@ +version: '2' +distribution_spec: + description: Dell's distribution of Llama Stack. TGI inference via Dell's custom + container + providers: + inference: + - remote::tgi + vector_io: + - inline::faiss + - remote::chromadb + - remote::pgvector + safety: + - inline::llama-guard + agents: + - inline::meta-reference + telemetry: + - inline::meta-reference + eval: + - inline::meta-reference + datasetio: + - remote::huggingface + - inline::localfs + scoring: + - inline::basic + - inline::llm-as-judge + - inline::braintrust + tool_runtime: + - remote::brave-search + - remote::tavily-search + - inline::code-interpreter + - inline::rag-runtime +image_type: conda diff --git a/llama_stack/templates/dell/dell.py b/llama_stack/templates/dell/dell.py new file mode 100644 index 000000000..6cc46e157 --- /dev/null +++ b/llama_stack/templates/dell/dell.py @@ -0,0 +1,152 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. +from pathlib import Path + +from llama_stack.apis.models.models import ModelType +from llama_stack.distribution.datatypes import ( + ModelInput, + Provider, + ShieldInput, + ToolGroupInput, +) +from llama_stack.providers.inline.inference.sentence_transformers import ( + SentenceTransformersInferenceConfig, +) + +from llama_stack.templates.template import DistributionTemplate, RunConfigSettings + + +def get_distribution_template() -> DistributionTemplate: + providers = { + "inference": ["remote::tgi"], + "vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"], + "safety": ["inline::llama-guard"], + "agents": ["inline::meta-reference"], + "telemetry": ["inline::meta-reference"], + "eval": ["inline::meta-reference"], + "datasetio": ["remote::huggingface", "inline::localfs"], + "scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"], + "tool_runtime": [ + "remote::brave-search", + "remote::tavily-search", + "inline::code-interpreter", + "inline::rag-runtime", + ], + } + name = "dell" + inference_provider = Provider( + provider_id="tgi0", + provider_type="remote::tgi", + config={ + "url": "${env.DEH_URL}", + }, + ) + safety_inference_provider = Provider( + provider_id="tgi1", + provider_type="remote::tgi", + config={ + "url": "${env.DEH_SAFETY_URL}", + }, + ) + embedding_provider = Provider( + provider_id="sentence-transformers", + provider_type="inline::sentence-transformers", + config=SentenceTransformersInferenceConfig.sample_run_config(), + ) + chromadb_provider = Provider( + provider_id="chromadb", + provider_type="remote::chromadb", + config={ + "url": "${env.CHROMA_URL}", + }, + ) + + inference_model = ModelInput( + model_id="${env.INFERENCE_MODEL}", + provider_id="tgi0", + ) + safety_model = ModelInput( + model_id="${env.SAFETY_MODEL}", + provider_id="tgi1", + ) + embedding_model = ModelInput( + model_id="all-MiniLM-L6-v2", + provider_id="sentence-transformers", + model_type=ModelType.embedding, + metadata={ + "embedding_dimension": 384, + }, + ) + default_tool_groups = [ + ToolGroupInput( + toolgroup_id="builtin::websearch", + provider_id="brave-search", + ), + ToolGroupInput( + toolgroup_id="builtin::rag", + provider_id="rag-runtime", + ), + ToolGroupInput( + toolgroup_id="builtin::code_interpreter", + provider_id="code-interpreter", + ), + ] + + return DistributionTemplate( + name=name, + distro_type="self_hosted", + description="Dell's distribution of Llama Stack. TGI inference via Dell's custom container", + container_image=None, + template_path=Path(__file__).parent / "doc_template.md", + providers=providers, + default_models=[inference_model, embedding_model], + run_configs={ + "run.yaml": RunConfigSettings( + provider_overrides={ + "inference": [inference_provider, embedding_provider], + "vector_io": [chromadb_provider], + }, + default_models=[inference_model, embedding_model], + default_tool_groups=default_tool_groups, + ), + "run-with-safety.yaml": RunConfigSettings( + provider_overrides={ + "inference": [ + inference_provider, + safety_inference_provider, + embedding_provider, + ], + "vector_io": [chromadb_provider], + }, + default_models=[inference_model, safety_model, embedding_model], + default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")], + default_tool_groups=default_tool_groups, + ), + }, + run_config_env_vars={ + "DEH_URL": ( + "http://0.0.0.0:8080", + "URL for the Dell inference server", + ), + "DEH_SAFETY_URL": ( + "http://0.0.0.0:8081", + "URL for the Dell safety inference server", + ), + "CHROMA_URL": ( + # http://host.containers.internal:8000 if running via docker + "http://0.0.0.0:8000", + "URL for the Chroma server", + ), + "INFERENCE_MODEL": ( + "meta-llama/Llama-3.2-3B-Instruct", + "Inference model loaded into the TGI server", + ), + "SAFETY_MODEL": ( + "meta-llama/Llama-Guard-3-1B", + "Name of the safety (Llama-Guard) model to use", + ), + }, + ) diff --git a/llama_stack/templates/dell/doc_template.md b/llama_stack/templates/dell/doc_template.md new file mode 100644 index 000000000..bb9df80d2 --- /dev/null +++ b/llama_stack/templates/dell/doc_template.md @@ -0,0 +1,133 @@ +--- +orphan: true +--- + +# Dell Distribution of Llama Stack + +```{toctree} +:maxdepth: 2 +:hidden: + +self +``` + +The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations. + +{{ providers_table }} + +You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference. + +{% if run_config_env_vars %} +### Environment Variables + +The following environment variables can be configured: + +{% for var, (default_value, description) in run_config_env_vars.items() %} +- `{{ var }}`: {{ description }} (default: `{{ default_value }}`) +{% endfor %} +{% endif %} + + +## Setting up TGI server + +Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker: + +```bash +export INFERENCE_PORT=8080 +export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct +export CUDA_VISIBLE_DEVICES=0 + +docker run --rm -it \ + -v $HOME/.cache/huggingface:/data \ + -p $INFERENCE_PORT:$INFERENCE_PORT \ + --gpus $CUDA_VISIBLE_DEVICES \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ + --dtype bfloat16 \ + --usage-stats off \ + --sharded false \ + --cuda-memory-fraction 0.7 \ + --model-id $INFERENCE_MODEL \ + --port $INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: + +```bash +export SAFETY_PORT=8081 +export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B +export CUDA_VISIBLE_DEVICES=1 + +docker run --rm -it \ + -v $HOME/.cache/huggingface:/data \ + -p $SAFETY_PORT:$SAFETY_PORT \ + --gpus $CUDA_VISIBLE_DEVICES \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ + --dtype bfloat16 \ + --usage-stats off \ + --sharded false \ + --model-id $SAFETY_MODEL \ + --port $SAFETY_PORT +``` + +## Running Llama Stack + +Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. + +### Via Docker + +This method allows you to get started quickly without having to build the distribution code. + +```bash +LLAMA_STACK_PORT=5001 +docker run \ + -it \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + llamastack/distribution-{{ name }} \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, use: + +```bash +# You need a local checkout of llama-stack to run this, get it using +# git clone https://github.com/meta-llama/llama-stack.git +cd /path/to/llama-stack + +docker run \ + -it \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + -v ~/.llama:/root/.llama \ + -v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \ + llamastack/distribution-{{ name }} \ + --yaml-config /root/my-run.yaml \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \ + --env SAFETY_MODEL=$SAFETY_MODEL \ + --env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT +``` + +### Via Conda + +Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. + +```bash +llama stack build --template {{ name }} --image-type conda +llama stack run ./run.yaml + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, use: + +```bash +llama stack run ./run-with-safety.yaml \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \ + --env SAFETY_MODEL=$SAFETY_MODEL \ + --env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT +``` diff --git a/llama_stack/templates/dell/run-with-safety.yaml b/llama_stack/templates/dell/run-with-safety.yaml new file mode 100644 index 000000000..bdc82d03a --- /dev/null +++ b/llama_stack/templates/dell/run-with-safety.yaml @@ -0,0 +1,118 @@ +version: '2' +image_name: dell +apis: +- agents +- datasetio +- eval +- inference +- safety +- scoring +- telemetry +- tool_runtime +- vector_io +providers: + inference: + - provider_id: tgi0 + provider_type: remote::tgi + config: + url: ${env.DEH_URL} + - provider_id: tgi1 + provider_type: remote::tgi + config: + url: ${env.DEH_SAFETY_URL} + - provider_id: sentence-transformers + provider_type: inline::sentence-transformers + config: {} + vector_io: + - provider_id: chromadb + provider_type: remote::chromadb + config: + url: ${env.CHROMA_URL} + safety: + - provider_id: llama-guard + provider_type: inline::llama-guard + config: {} + agents: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + persistence_store: + type: sqlite + namespace: null + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/agents_store.db + telemetry: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + service_name: ${env.OTEL_SERVICE_NAME:llama-stack} + sinks: ${env.TELEMETRY_SINKS:console,sqlite} + sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/dell/trace_store.db} + eval: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: {} + datasetio: + - provider_id: huggingface + provider_type: remote::huggingface + config: {} + - provider_id: localfs + provider_type: inline::localfs + config: {} + scoring: + - provider_id: basic + provider_type: inline::basic + config: {} + - provider_id: llm-as-judge + provider_type: inline::llm-as-judge + config: {} + - provider_id: braintrust + provider_type: inline::braintrust + config: + openai_api_key: ${env.OPENAI_API_KEY:} + tool_runtime: + - provider_id: brave-search + provider_type: remote::brave-search + config: + api_key: ${env.BRAVE_SEARCH_API_KEY:} + max_results: 3 + - provider_id: tavily-search + provider_type: remote::tavily-search + config: + api_key: ${env.TAVILY_SEARCH_API_KEY:} + max_results: 3 + - provider_id: code-interpreter + provider_type: inline::code-interpreter + config: {} + - provider_id: rag-runtime + provider_type: inline::rag-runtime + config: {} +metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/registry.db +models: +- metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: tgi0 + model_type: llm +- metadata: {} + model_id: ${env.SAFETY_MODEL} + provider_id: tgi1 + model_type: llm +- metadata: + embedding_dimension: 384 + model_id: all-MiniLM-L6-v2 + provider_id: sentence-transformers + model_type: embedding +shields: +- shield_id: ${env.SAFETY_MODEL} +vector_dbs: [] +datasets: [] +scoring_fns: [] +eval_tasks: [] +tool_groups: +- toolgroup_id: builtin::websearch + provider_id: brave-search +- toolgroup_id: builtin::rag + provider_id: rag-runtime +- toolgroup_id: builtin::code_interpreter + provider_id: code-interpreter diff --git a/llama_stack/templates/dell/run.yaml b/llama_stack/templates/dell/run.yaml new file mode 100644 index 000000000..2ba62a782 --- /dev/null +++ b/llama_stack/templates/dell/run.yaml @@ -0,0 +1,109 @@ +version: '2' +image_name: dell +apis: +- agents +- datasetio +- eval +- inference +- safety +- scoring +- telemetry +- tool_runtime +- vector_io +providers: + inference: + - provider_id: tgi0 + provider_type: remote::tgi + config: + url: ${env.DEH_URL} + - provider_id: sentence-transformers + provider_type: inline::sentence-transformers + config: {} + vector_io: + - provider_id: chromadb + provider_type: remote::chromadb + config: + url: ${env.CHROMA_URL} + safety: + - provider_id: llama-guard + provider_type: inline::llama-guard + config: {} + agents: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + persistence_store: + type: sqlite + namespace: null + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/agents_store.db + telemetry: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + service_name: ${env.OTEL_SERVICE_NAME:llama-stack} + sinks: ${env.TELEMETRY_SINKS:console,sqlite} + sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/dell/trace_store.db} + eval: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: {} + datasetio: + - provider_id: huggingface + provider_type: remote::huggingface + config: {} + - provider_id: localfs + provider_type: inline::localfs + config: {} + scoring: + - provider_id: basic + provider_type: inline::basic + config: {} + - provider_id: llm-as-judge + provider_type: inline::llm-as-judge + config: {} + - provider_id: braintrust + provider_type: inline::braintrust + config: + openai_api_key: ${env.OPENAI_API_KEY:} + tool_runtime: + - provider_id: brave-search + provider_type: remote::brave-search + config: + api_key: ${env.BRAVE_SEARCH_API_KEY:} + max_results: 3 + - provider_id: tavily-search + provider_type: remote::tavily-search + config: + api_key: ${env.TAVILY_SEARCH_API_KEY:} + max_results: 3 + - provider_id: code-interpreter + provider_type: inline::code-interpreter + config: {} + - provider_id: rag-runtime + provider_type: inline::rag-runtime + config: {} +metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/dell}/registry.db +models: +- metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: tgi0 + model_type: llm +- metadata: + embedding_dimension: 384 + model_id: all-MiniLM-L6-v2 + provider_id: sentence-transformers + model_type: embedding +shields: [] +vector_dbs: [] +datasets: [] +scoring_fns: [] +eval_tasks: [] +tool_groups: +- toolgroup_id: builtin::websearch + provider_id: brave-search +- toolgroup_id: builtin::rag + provider_id: rag-runtime +- toolgroup_id: builtin::code_interpreter + provider_id: code-interpreter