mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-23 05:09:41 +00:00
Merge upstream/main and resolve conflicts
Resolved merge conflicts in: - Documentation files: updated vector IO provider docs to include both kvstore fields and embedding model configuration - Config files: merged kvstore requirements from upstream with embedding model fields - Dependencies: updated to latest client versions while preserving llama-models dependency - Regenerated lockfiles to ensure consistency All embedding model configuration features preserved while incorporating upstream changes.
This commit is contained in:
commit
6634b21a76
92 changed files with 3069 additions and 2481 deletions
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
|
@ -105,6 +106,7 @@ class VectorIORouter(VectorIO):
|
|||
embedding_model: str,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
vector_db_name: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> None:
|
||||
logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}")
|
||||
|
|
@ -113,6 +115,7 @@ class VectorIORouter(VectorIO):
|
|||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
vector_db_name,
|
||||
provider_vector_db_id,
|
||||
)
|
||||
|
||||
|
|
@ -147,7 +150,6 @@ class VectorIORouter(VectorIO):
|
|||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = None,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
|
||||
|
||||
|
|
@ -210,17 +212,17 @@ class VectorIORouter(VectorIO):
|
|||
)
|
||||
raise ValueError(f"Unable to determine embedding model for vector store '{name}': {e}") from e
|
||||
|
||||
vector_db_id = name
|
||||
vector_db_id = f"vs_{uuid.uuid4()}"
|
||||
registered_vector_db = await self.routing_table.register_vector_db(
|
||||
vector_db_id,
|
||||
embedding_model,
|
||||
embedding_dimension,
|
||||
provider_id,
|
||||
provider_vector_db_id,
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model,
|
||||
embedding_dimension=embedding_dimension,
|
||||
provider_id=provider_id,
|
||||
provider_vector_db_id=vector_db_id,
|
||||
vector_db_name=name,
|
||||
)
|
||||
|
||||
return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store(
|
||||
vector_db_id,
|
||||
name=name,
|
||||
file_ids=file_ids,
|
||||
expires_after=expires_after,
|
||||
chunking_strategy=chunking_strategy,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue