swapping to configuring the entire chunk template

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-05-13 22:47:35 -04:00
parent 2e70782e63
commit 66f7b42795
7 changed files with 58 additions and 28 deletions

View file

@ -11134,9 +11134,9 @@
"type": "integer",
"default": 5
},
"include_metadata_in_content": {
"type": "boolean",
"default": false
"chunk_template": {
"type": "string",
"default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
}
},
"additionalProperties": false,
@ -11144,7 +11144,7 @@
"query_generator_config",
"max_tokens_in_context",
"max_chunks",
"include_metadata_in_content"
"chunk_template"
],
"title": "RAGQueryConfig"
},

View file

@ -7690,15 +7690,20 @@ components:
max_chunks:
type: integer
default: 5
include_metadata_in_content:
type: boolean
default: false
chunk_template:
type: string
default: >
Result {index}
Content: {chunk.content}
Metadata: {metadata}
additionalProperties: false
required:
- query_generator_config
- max_tokens_in_context
- max_chunks
- include_metadata_in_content
- chunk_template
title: RAGQueryConfig
RAGQueryGeneratorConfig:
oneOf:

View file

@ -99,14 +99,14 @@ results = client.tool_runtime.rag_tool.query(
)
```
You can configure adding metadata to the context if you find it useful for your application. Simply add:
You can configure how the RAG tool adds metadata to the context if you find it useful for your application. Simply add:
```python
# Query documents
results = client.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What do you know about...",
query_config={
"include_metadata_in_content": True,
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
)
```
@ -131,7 +131,7 @@ agent = Agent(
"query_config": {
"chunk_size_in_tokens": 512,
"chunk_overlap_in_tokens": 0,
"include_metadata_in_content": False,
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
},
},
}

View file

@ -7,7 +7,7 @@
from enum import Enum
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, field_validator
from typing_extensions import Protocol, runtime_checkable
from llama_stack.apis.common.content_types import URL, InterleavedContent
@ -72,7 +72,19 @@ class RAGQueryConfig(BaseModel):
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
max_tokens_in_context: int = 4096
max_chunks: int = 5
include_metadata_in_content: bool = False
# Optional template for formatting each retrieved chunk in the context.
# Available placeholders: {index} (1-based chunk ordinal), {metadata} (chunk metadata dict), {chunk.content} (chunk content string).
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
@field_validator("chunk_template")
def validate_chunk_template(cls, v: str) -> str:
if "{chunk.content}" not in v:
raise ValueError("chunk_template must contain {chunk.content}")
if "{index}" not in v:
raise ValueError("chunk_template must contain {index}")
if len(v) == 0:
raise ValueError("chunk_template must not be empty")
return v
@runtime_checkable

View file

@ -146,8 +146,7 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
for i, chunk in enumerate(chunks):
metadata = chunk.metadata
tokens += metadata["token_count"]
if query_config.include_metadata_in_content:
tokens += metadata["metadata_token_count"]
tokens += metadata["metadata_token_count"]
if tokens > query_config.max_tokens_in_context:
log.error(
@ -155,15 +154,9 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
)
break
text_content = f"Result {i + 1}:\n"
if query_config.include_metadata_in_content:
metadata_subset = {
k: v for k, v in metadata.items() if k not in ["token_count", "metadata_token_count"]
}
text_content += f"\nMetadata: {metadata_subset}"
else:
text_content += f"Document_id:{metadata['document_id'][:5]}"
text_content += f"\nContent: {chunk.content}\n"
# text_content = f"Result {i + 1}:\n"
metadata_subset = {k: v for k, v in metadata.items() if k not in ["token_count", "metadata_token_count"]}
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_subset)
picked.append(TextContentItem(text=text_content))
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))

View file

@ -320,3 +320,6 @@ ignore_missing_imports = true
init_forbid_extra = true
init_typed = true
warn_required_dynamic_aliases = true
[tool.ruff.lint.pep8-naming]
classmethod-decorators = ["classmethod", "pydantic.field_validator"]

View file

@ -141,7 +141,7 @@ def test_vector_db_insert_from_url_and_query(client_with_empty_registry, sample_
document_id=f"num-{i}",
content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
mime_type="text/plain",
metadata={"author": "llama", "source": url},
metadata={},
)
for i, url in enumerate(urls)
]
@ -205,12 +205,29 @@ def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_i
chunk_size_in_tokens=512,
)
response = client_with_empty_registry.tool_runtime.rag_tool.query(
response_with_metadata = client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
)
assert_valid_text_response(response_with_metadata)
assert any("metadata:" in chunk.text.lower() for chunk in response_with_metadata.content)
response_without_metadata = client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
query_config={
"include_metadata_in_content": True,
"chunk_template": "Result {index}\nContent: {chunk.content}\n",
},
)
assert_valid_text_response(response)
assert any("metadata:" in chunk.text.lower() for chunk in response.content)
assert_valid_text_response(response_without_metadata)
assert not any("metadata:" in chunk.text.lower() for chunk in response_without_metadata.content)
with pytest.raises(ValueError):
client_with_empty_registry.tool_runtime.rag_tool.query(
vector_db_ids=[vector_db_id],
content="What is the name of the method used for fine-tuning?",
query_config={
"chunk_template": "This should raise a ValueError because it is missing the proper template variables",
},
)