Add SambaNova Adapter

This commit is contained in:
Edward Ma 2024-09-27 13:48:24 -07:00
parent 5828ffd53b
commit 67ac0e0895
5 changed files with 311 additions and 0 deletions

View file

@ -0,0 +1,10 @@
name: local-sambanova
distribution_spec:
description: Use SambaNova Cloud API for running LLM inference
providers:
inference: remote::sambanova
memory: meta-reference
safety: meta-reference
agents: meta-reference
telemetry: meta-reference
image_type: conda

View file

@ -0,0 +1,16 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import SambaNovaImplConfig
from .sambanova import SambaNovaInferenceAdapter
async def get_adapter_impl(config: SambaNovaImplConfig, _deps):
assert isinstance(
config, SambaNovaImplConfig
), f"Unexpected config type: {type(config)}"
impl = SambaNovaInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class SambaNovaImplConfig(BaseModel):
url: str = Field(
default="https://api.sambanova.ai/v1",
description="The URL for the SambaNova Cloud AI server",
)
api_key: str = Field(
default="",
description="The SambaNova AI API Key",
)

View file

@ -0,0 +1,254 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator
import openai
from openai import OpenAI
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
)
from .config import SambaNovaImplConfig
SAMBANOVA_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "Meta-Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct": "Meta-Llama-3.1-405B-Instruct",
}
class SambaNovaInferenceAdapter(Inference):
def __init__(self, config: SambaNovaImplConfig) -> None:
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> OpenAI:
return OpenAI(
base_url=self.config.url,
api_key=self.config.api_key
)
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_sambanova_messages(self, messages: list[Message]) -> list:
sambanova_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
sambanova_messages.append({"role": role, "content": message.content})
return sambanova_messages
def resolve_sambanova_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None
and model.descriptor(shorten_default_variant=True)
in SAMBANOVA_SUPPORTED_MODELS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(SAMBANOVA_SUPPORTED_MODELS.keys())}"
return SAMBANOVA_SUPPORTED_MODELS.get(
model.descriptor(shorten_default_variant=True)
)
def get_sambanova_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
options = self.get_sambanova_chat_options(request)
sambanova_model = self.resolve_sambanova_model(request.model)
if not request.stream:
r = self.client.chat.completions.create(
model=sambanova_model,
messages=self._messages_to_sambanova_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
for chunk in self.client.chat.completions.create(
model=sambanova_model,
messages=self._messages_to_sambanova_messages(messages),
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None
and chunk.choices[0].finish_reason == "stop"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
text = chunk.choices[0].delta.content
if text is None:
continue
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -94,4 +94,15 @@ def available_providers() -> List[ProviderSpec]:
header_extractor_class="llama_stack.providers.adapters.inference.together.TogetherHeaderExtractor", header_extractor_class="llama_stack.providers.adapters.inference.together.TogetherHeaderExtractor",
), ),
), ),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_id="sambanova",
pip_packages=[
"openai",
],
module="llama_stack.providers.adapters.inference.sambanova",
config_class="llama_stack.providers.adapters.inference.sambanova.SambaNovaImplConfig",
),
),
] ]