remove recordings

This commit is contained in:
Swapna Lekkala 2025-10-12 06:28:08 -07:00
parent 82cbcada39
commit 67de6af0f0
36 changed files with 2453 additions and 1037 deletions

View file

@ -9,7 +9,7 @@ from typing import Any
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from llama_stack.apis.inference import Message
from llama_stack.apis.inference import OpenAIMessageParam
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
@ -22,9 +22,6 @@ from llama_stack.apis.shields import Shield
from llama_stack.core.utils.model_utils import model_local_dir
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
from .config import PromptGuardConfig, PromptGuardType
@ -56,7 +53,7 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
async def run_shield(
self,
shield_id: str,
messages: list[Message],
messages: list[OpenAIMessageParam],
params: dict[str, Any],
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
@ -93,9 +90,25 @@ class PromptGuardShield:
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForSequenceClassification.from_pretrained(model_dir, device_map=self.device)
async def run(self, messages: list[Message]) -> RunShieldResponse:
def _extract_text_from_openai_content(self, content) -> str:
"""Extract text content from OpenAI message content format."""
if isinstance(content, str):
return content
elif isinstance(content, list):
text_parts = []
for part in content:
if hasattr(part, "type") and part.type == "text":
text_parts.append(part.text)
elif hasattr(part, "text"):
text_parts.append(part.text)
# Skip non-text parts like images or files
return " ".join(text_parts)
else:
raise ValueError(f"Unsupported content type: {type(content)}")
async def run(self, messages: list[OpenAIMessageParam]) -> RunShieldResponse:
message = messages[-1]
text = interleaved_content_as_str(message.content)
text = self._extract_text_from_openai_content(message.content)
# run model on messages and return response
inputs = self.tokenizer(text, return_tensors="pt")