add tools to chat completion request

This commit is contained in:
Hardik Shah 2024-08-21 17:48:48 -07:00
parent 9777639a1c
commit 68855ed218
26 changed files with 558 additions and 226 deletions

View file

@ -110,35 +110,6 @@ class Session(BaseModel):
started_at: datetime
@json_schema_type
class ToolPromptFormat(Enum):
"""This Enum refers to the prompt format for calling zero shot tools
`json` --
Refers to the json format for calling tools.
The json format takes the form like
{
"type": "function",
"function" : {
"name": "function_name",
"description": "function_description",
"parameters": {...}
}
}
`function_tag` --
This is an example of how you could define
your own user defined format for making tool calls.
The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are defined in `system_prompt.py`
"""
json = "json"
function_tag = "function_tag"
@json_schema_type
class AgenticSystemInstanceConfig(BaseModel):
instructions: str

View file

@ -56,10 +56,10 @@ from llama_toolchain.safety.api.datatypes import (
)
from llama_toolchain.agentic_system.api.endpoints import * # noqa
from llama_toolchain.tools.base import BaseTool
from llama_toolchain.tools.builtin import SingleMessageBuiltinTool
from .safety import SafetyException, ShieldRunnerMixin
from .system_prompt import get_agentic_prefix_messages
from .tools.base import BaseTool
from .tools.builtin import SingleMessageBuiltinTool
class AgentInstance(ShieldRunnerMixin):
@ -85,18 +85,6 @@ class AgentInstance(ShieldRunnerMixin):
self.inference_api = inference_api
self.safety_api = safety_api
if prefix_messages is not None and len(prefix_messages) > 0:
self.prefix_messages = prefix_messages
else:
self.prefix_messages = get_agentic_prefix_messages(
builtin_tools,
custom_tool_definitions,
tool_prompt_format,
)
for m in self.prefix_messages:
print(m.content)
self.max_infer_iters = max_infer_iters
self.tools_dict = {t.get_name(): t for t in builtin_tools}
@ -344,7 +332,7 @@ class AgentInstance(ShieldRunnerMixin):
stream: bool = False,
max_gen_len: Optional[int] = None,
) -> AsyncGenerator:
input_messages = preprocess_dialog(input_messages, self.prefix_messages)
input_messages = preprocess_dialog(input_messages)
attachments = []
@ -373,7 +361,8 @@ class AgentInstance(ShieldRunnerMixin):
req = ChatCompletionRequest(
model=self.model,
messages=input_messages,
available_tools=self.instance_config.available_tools,
tools=self.instance_config.available_tools,
tool_prompt_format=self.instance_config.tool_prompt_format,
stream=True,
sampling_params=SamplingParams(
temperature=temperature,
@ -601,14 +590,12 @@ def attachment_message(url: URL) -> ToolResponseMessage:
)
def preprocess_dialog(
messages: List[Message], prefix_messages: List[Message]
) -> List[Message]:
def preprocess_dialog(messages: List[Message]) -> List[Message]:
"""
Preprocesses the dialog by removing the system message and
adding the system message to the beginning of the dialog.
"""
ret = prefix_messages.copy()
ret = []
for m in messages:
if m.role == Role.system.value:

View file

@ -24,17 +24,17 @@ from llama_toolchain.agentic_system.api import (
AgenticSystemTurnCreateRequest,
)
from .agent_instance import AgentInstance
from .config import AgenticSystemConfig
from .tools.builtin import (
from llama_toolchain.tools.builtin import (
BraveSearchTool,
CodeInterpreterTool,
PhotogenTool,
WolframAlphaTool,
)
from .tools.safety import with_safety
from llama_toolchain.tools.safety import with_safety
from .agent_instance import AgentInstance
from .config import AgenticSystemConfig
logger = logging.getLogger()

View file

@ -18,7 +18,7 @@ from llama_toolchain.agentic_system.api import (
from llama_toolchain.agentic_system.api.datatypes import ToolPromptFormat
from llama_toolchain.agentic_system.client import AgenticSystemClient
from llama_toolchain.agentic_system.tools.custom.execute import (
from llama_toolchain.agentic_system.meta_reference.execute_with_custom_tools import (
execute_with_custom_tools,
)
from llama_toolchain.safety.api.datatypes import BuiltinShield, ShieldDefinition

View file

@ -15,6 +15,41 @@ from typing_extensions import Annotated
from llama_models.llama3.api.datatypes import * # noqa: F403
@json_schema_type
class ToolChoice(Enum):
auto = "auto"
required = "required"
@json_schema_type
class ToolPromptFormat(Enum):
"""This Enum refers to the prompt format for calling zero shot tools
`json` --
Refers to the json format for calling tools.
The json format takes the form like
{
"type": "function",
"function" : {
"name": "function_name",
"description": "function_description",
"parameters": {...}
}
}
`function_tag` --
This is an example of how you could define
your own user defined format for making tool calls.
The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are defined in `system_prompt.py`
"""
json = "json"
function_tag = "function_tag"
class LogProbConfig(BaseModel):
top_k: Optional[int] = 0

View file

@ -7,6 +7,8 @@
from .datatypes import * # noqa: F403
from typing import Optional, Protocol
from llama_models.llama3.api.datatypes import ToolDefinition
# this dependency is annoying and we need a forked up version anyway
from llama_models.schema_utils import webmethod
@ -56,7 +58,11 @@ class ChatCompletionRequest(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
@ -82,8 +88,11 @@ class BatchChatCompletionRequest(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
logprobs: Optional[LogProbConfig] = None

View file

@ -22,7 +22,7 @@ from llama_toolchain.inference.api import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_toolchain.inference.prepare_messages import prepare_messages_for_tools
from .config import MetaReferenceImplConfig
from .model_parallel import LlamaModelParallelGenerator
@ -67,6 +67,7 @@ class MetaReferenceInferenceImpl(Inference):
) -> AsyncIterator[
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
]:
request = prepare_messages_for_tools(request)
model = resolve_model(request.model)
if model is None:
raise RuntimeError(

View file

@ -32,7 +32,7 @@ from llama_toolchain.inference.api import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_toolchain.inference.prepare_messages import prepare_messages_for_tools
from .config import OllamaImplConfig
# TODO: Eventually this will move to the llama cli model list command
@ -111,6 +111,7 @@ class OllamaInference(Inference):
return options
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
request = prepare_messages_for_tools(request)
# accumulate sampling params and other options to pass to ollama
options = self.get_ollama_chat_options(request)
ollama_model = self.resolve_ollama_model(request.model)

View file

@ -1,70 +1,90 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import os
import textwrap
from datetime import datetime
from typing import List
from llama_toolchain.agentic_system.api.datatypes import ToolPromptFormat
from llama_toolchain.inference.api import (
BuiltinTool,
Message,
SystemMessage,
ToolDefinition,
UserMessage,
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.tools.builtin import (
BraveSearchTool,
CodeInterpreterTool,
PhotogenTool,
WolframAlphaTool,
)
from .tools.builtin import SingleMessageBuiltinTool
def tool_breakdown(tools: List[ToolDefinition]) -> str:
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
builtin_tools.append(dfn)
else:
custom_tools.append(dfn)
return builtin_tools, custom_tools
def get_agentic_prefix_messages(
builtin_tools: List[SingleMessageBuiltinTool],
custom_tools: List[ToolDefinition],
tool_prompt_format: ToolPromptFormat,
) -> List[Message]:
def prepare_messages_for_tools(request: ChatCompletionRequest) -> ChatCompletionRequest:
"""This functions takes a ChatCompletionRequest and returns an augmented request.
The request's messages are augmented to update the system message
corresponding to the tool definitions provided in the request.
"""
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
existing_messages = request.messages
existing_system_message = None
if existing_messages[0].role == Role.system.value:
existing_system_message = existing_messages.pop(0)
builtin_tools, custom_tools = tool_breakdown(request.tools)
messages = []
content = ""
if builtin_tools:
if builtin_tools or custom_tools:
content += "Environment: ipython\n"
if builtin_tools:
tool_str = ", ".join(
[
t.get_name()
t.tool_name.value
for t in builtin_tools
if t.get_name() != BuiltinTool.code_interpreter.value
if t.tool_name != BuiltinTool.code_interpreter
]
)
if tool_str:
content += f"Tools: {tool_str}"
content += f"Tools: {tool_str}\n"
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
date_str = f"""
Cutting Knowledge Date: December 2023
Today Date: {formatted_date}\n"""
content += date_str
date_str = textwrap.dedent(
f"""
Cutting Knowledge Date: December 2023
Today Date: {formatted_date}
"""
)
content += date_str.lstrip("\n")
if existing_system_message:
content += "\n"
content += existing_system_message.content
messages.append(SystemMessage(content=content))
if custom_tools:
if tool_prompt_format == ToolPromptFormat.function_tag:
if request.tool_prompt_format == ToolPromptFormat.function_tag:
text = prompt_for_function_tag(custom_tools)
messages.append(UserMessage(content=text))
elif tool_prompt_format == ToolPromptFormat.json:
elif request.tool_prompt_format == ToolPromptFormat.json:
text = prompt_for_json(custom_tools)
messages.append(UserMessage(content=text))
else:
raise NotImplementedError(
f"Tool prompt format {tool_prompt_format} is not supported"
)
else:
messages.append(SystemMessage(content=content))
return messages
messages += existing_messages
request.messages = messages
return request
def prompt_for_json(custom_tools: List[ToolDefinition]) -> str:
@ -91,23 +111,26 @@ def prompt_for_function_tag(custom_tools: List[ToolDefinition]) -> str:
custom_tool_params += get_instruction_string(t) + "\n"
custom_tool_params += get_parameters_string(t) + "\n\n"
content = f"""
You have access to the following functions:
content = textwrap.dedent(
"""
You have access to the following functions:
{custom_tool_params}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
{custom_tool_params}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{{"example_name": "example_value"}}</function>
<function=example_function_name>{{"example_name": "example_value"}}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
return content
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
)
return content.lstrip("\n").format(custom_tool_params=custom_tool_params)
def get_instruction_string(custom_tool_definition) -> str:

View file

@ -13,9 +13,7 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_toolchain.agentic_system.api import * # noqa: F403
# TODO: this is symptomatic of us needing to pull more tooling related utilities
from llama_toolchain.agentic_system.meta_reference.tools.builtin import (
interpret_content_as_attachment,
)
from llama_toolchain.tools.builtin import interpret_content_as_attachment
class CustomTool: