add tools to chat completion request

This commit is contained in:
Hardik Shah 2024-08-21 17:48:48 -07:00
parent 9777639a1c
commit 68855ed218
26 changed files with 558 additions and 226 deletions

View file

@ -110,35 +110,6 @@ class Session(BaseModel):
started_at: datetime
@json_schema_type
class ToolPromptFormat(Enum):
"""This Enum refers to the prompt format for calling zero shot tools
`json` --
Refers to the json format for calling tools.
The json format takes the form like
{
"type": "function",
"function" : {
"name": "function_name",
"description": "function_description",
"parameters": {...}
}
}
`function_tag` --
This is an example of how you could define
your own user defined format for making tool calls.
The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are defined in `system_prompt.py`
"""
json = "json"
function_tag = "function_tag"
@json_schema_type
class AgenticSystemInstanceConfig(BaseModel):
instructions: str

View file

@ -56,10 +56,10 @@ from llama_toolchain.safety.api.datatypes import (
)
from llama_toolchain.agentic_system.api.endpoints import * # noqa
from llama_toolchain.tools.base import BaseTool
from llama_toolchain.tools.builtin import SingleMessageBuiltinTool
from .safety import SafetyException, ShieldRunnerMixin
from .system_prompt import get_agentic_prefix_messages
from .tools.base import BaseTool
from .tools.builtin import SingleMessageBuiltinTool
class AgentInstance(ShieldRunnerMixin):
@ -85,18 +85,6 @@ class AgentInstance(ShieldRunnerMixin):
self.inference_api = inference_api
self.safety_api = safety_api
if prefix_messages is not None and len(prefix_messages) > 0:
self.prefix_messages = prefix_messages
else:
self.prefix_messages = get_agentic_prefix_messages(
builtin_tools,
custom_tool_definitions,
tool_prompt_format,
)
for m in self.prefix_messages:
print(m.content)
self.max_infer_iters = max_infer_iters
self.tools_dict = {t.get_name(): t for t in builtin_tools}
@ -344,7 +332,7 @@ class AgentInstance(ShieldRunnerMixin):
stream: bool = False,
max_gen_len: Optional[int] = None,
) -> AsyncGenerator:
input_messages = preprocess_dialog(input_messages, self.prefix_messages)
input_messages = preprocess_dialog(input_messages)
attachments = []
@ -373,7 +361,8 @@ class AgentInstance(ShieldRunnerMixin):
req = ChatCompletionRequest(
model=self.model,
messages=input_messages,
available_tools=self.instance_config.available_tools,
tools=self.instance_config.available_tools,
tool_prompt_format=self.instance_config.tool_prompt_format,
stream=True,
sampling_params=SamplingParams(
temperature=temperature,
@ -601,14 +590,12 @@ def attachment_message(url: URL) -> ToolResponseMessage:
)
def preprocess_dialog(
messages: List[Message], prefix_messages: List[Message]
) -> List[Message]:
def preprocess_dialog(messages: List[Message]) -> List[Message]:
"""
Preprocesses the dialog by removing the system message and
adding the system message to the beginning of the dialog.
"""
ret = prefix_messages.copy()
ret = []
for m in messages:
if m.role == Role.system.value:

View file

@ -24,17 +24,17 @@ from llama_toolchain.agentic_system.api import (
AgenticSystemTurnCreateRequest,
)
from .agent_instance import AgentInstance
from .config import AgenticSystemConfig
from .tools.builtin import (
from llama_toolchain.tools.builtin import (
BraveSearchTool,
CodeInterpreterTool,
PhotogenTool,
WolframAlphaTool,
)
from .tools.safety import with_safety
from llama_toolchain.tools.safety import with_safety
from .agent_instance import AgentInstance
from .config import AgenticSystemConfig
logger = logging.getLogger()

View file

@ -18,7 +18,7 @@ from llama_toolchain.agentic_system.api import (
from llama_toolchain.agentic_system.api.datatypes import ToolPromptFormat
from llama_toolchain.agentic_system.client import AgenticSystemClient
from llama_toolchain.agentic_system.tools.custom.execute import (
from llama_toolchain.agentic_system.meta_reference.execute_with_custom_tools import (
execute_with_custom_tools,
)
from llama_toolchain.safety.api.datatypes import BuiltinShield, ShieldDefinition

View file

@ -15,6 +15,41 @@ from typing_extensions import Annotated
from llama_models.llama3.api.datatypes import * # noqa: F403
@json_schema_type
class ToolChoice(Enum):
auto = "auto"
required = "required"
@json_schema_type
class ToolPromptFormat(Enum):
"""This Enum refers to the prompt format for calling zero shot tools
`json` --
Refers to the json format for calling tools.
The json format takes the form like
{
"type": "function",
"function" : {
"name": "function_name",
"description": "function_description",
"parameters": {...}
}
}
`function_tag` --
This is an example of how you could define
your own user defined format for making tool calls.
The function_tag format looks like this,
<function=function_name>(parameters)</function>
The detailed prompts for each of these formats are defined in `system_prompt.py`
"""
json = "json"
function_tag = "function_tag"
class LogProbConfig(BaseModel):
top_k: Optional[int] = 0

View file

@ -7,6 +7,8 @@
from .datatypes import * # noqa: F403
from typing import Optional, Protocol
from llama_models.llama3.api.datatypes import ToolDefinition
# this dependency is annoying and we need a forked up version anyway
from llama_models.schema_utils import webmethod
@ -56,7 +58,11 @@ class ChatCompletionRequest(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
stream: Optional[bool] = False
logprobs: Optional[LogProbConfig] = None
@ -82,8 +88,11 @@ class BatchChatCompletionRequest(BaseModel):
sampling_params: Optional[SamplingParams] = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
tool_prompt_format: Optional[ToolPromptFormat] = Field(
default=ToolPromptFormat.json
)
logprobs: Optional[LogProbConfig] = None

View file

@ -22,7 +22,7 @@ from llama_toolchain.inference.api import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_toolchain.inference.prepare_messages import prepare_messages_for_tools
from .config import MetaReferenceImplConfig
from .model_parallel import LlamaModelParallelGenerator
@ -67,6 +67,7 @@ class MetaReferenceInferenceImpl(Inference):
) -> AsyncIterator[
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
]:
request = prepare_messages_for_tools(request)
model = resolve_model(request.model)
if model is None:
raise RuntimeError(

View file

@ -32,7 +32,7 @@ from llama_toolchain.inference.api import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_toolchain.inference.prepare_messages import prepare_messages_for_tools
from .config import OllamaImplConfig
# TODO: Eventually this will move to the llama cli model list command
@ -111,6 +111,7 @@ class OllamaInference(Inference):
return options
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
request = prepare_messages_for_tools(request)
# accumulate sampling params and other options to pass to ollama
options = self.get_ollama_chat_options(request)
ollama_model = self.resolve_ollama_model(request.model)

View file

@ -1,70 +1,90 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import os
import textwrap
from datetime import datetime
from typing import List
from llama_toolchain.agentic_system.api.datatypes import ToolPromptFormat
from llama_toolchain.inference.api import (
BuiltinTool,
Message,
SystemMessage,
ToolDefinition,
UserMessage,
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.tools.builtin import (
BraveSearchTool,
CodeInterpreterTool,
PhotogenTool,
WolframAlphaTool,
)
from .tools.builtin import SingleMessageBuiltinTool
def tool_breakdown(tools: List[ToolDefinition]) -> str:
builtin_tools, custom_tools = [], []
for dfn in tools:
if isinstance(dfn.tool_name, BuiltinTool):
builtin_tools.append(dfn)
else:
custom_tools.append(dfn)
return builtin_tools, custom_tools
def get_agentic_prefix_messages(
builtin_tools: List[SingleMessageBuiltinTool],
custom_tools: List[ToolDefinition],
tool_prompt_format: ToolPromptFormat,
) -> List[Message]:
def prepare_messages_for_tools(request: ChatCompletionRequest) -> ChatCompletionRequest:
"""This functions takes a ChatCompletionRequest and returns an augmented request.
The request's messages are augmented to update the system message
corresponding to the tool definitions provided in the request.
"""
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
existing_messages = request.messages
existing_system_message = None
if existing_messages[0].role == Role.system.value:
existing_system_message = existing_messages.pop(0)
builtin_tools, custom_tools = tool_breakdown(request.tools)
messages = []
content = ""
if builtin_tools:
if builtin_tools or custom_tools:
content += "Environment: ipython\n"
if builtin_tools:
tool_str = ", ".join(
[
t.get_name()
t.tool_name.value
for t in builtin_tools
if t.get_name() != BuiltinTool.code_interpreter.value
if t.tool_name != BuiltinTool.code_interpreter
]
)
if tool_str:
content += f"Tools: {tool_str}"
content += f"Tools: {tool_str}\n"
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
date_str = f"""
Cutting Knowledge Date: December 2023
Today Date: {formatted_date}\n"""
content += date_str
date_str = textwrap.dedent(
f"""
Cutting Knowledge Date: December 2023
Today Date: {formatted_date}
"""
)
content += date_str.lstrip("\n")
if existing_system_message:
content += "\n"
content += existing_system_message.content
messages.append(SystemMessage(content=content))
if custom_tools:
if tool_prompt_format == ToolPromptFormat.function_tag:
if request.tool_prompt_format == ToolPromptFormat.function_tag:
text = prompt_for_function_tag(custom_tools)
messages.append(UserMessage(content=text))
elif tool_prompt_format == ToolPromptFormat.json:
elif request.tool_prompt_format == ToolPromptFormat.json:
text = prompt_for_json(custom_tools)
messages.append(UserMessage(content=text))
else:
raise NotImplementedError(
f"Tool prompt format {tool_prompt_format} is not supported"
)
else:
messages.append(SystemMessage(content=content))
return messages
messages += existing_messages
request.messages = messages
return request
def prompt_for_json(custom_tools: List[ToolDefinition]) -> str:
@ -91,23 +111,26 @@ def prompt_for_function_tag(custom_tools: List[ToolDefinition]) -> str:
custom_tool_params += get_instruction_string(t) + "\n"
custom_tool_params += get_parameters_string(t) + "\n\n"
content = f"""
You have access to the following functions:
content = textwrap.dedent(
"""
You have access to the following functions:
{custom_tool_params}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
{custom_tool_params}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{{"example_name": "example_value"}}</function>
<function=example_function_name>{{"example_name": "example_value"}}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
return content
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
)
return content.lstrip("\n").format(custom_tool_params=custom_tool_params)
def get_instruction_string(custom_tool_definition) -> str:

View file

@ -13,9 +13,7 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_toolchain.agentic_system.api import * # noqa: F403
# TODO: this is symptomatic of us needing to pull more tooling related utilities
from llama_toolchain.agentic_system.meta_reference.tools.builtin import (
interpret_content_as_attachment,
)
from llama_toolchain.tools.builtin import interpret_content_as_attachment
class CustomTool:

View file

@ -0,0 +1,45 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Dict
from llama_models.llama3.api.datatypes import ToolParamDefinition
from llama_toolchain.tools.custom.datatypes import SingleMessageCustomTool
class GetBoilingPointTool(SingleMessageCustomTool):
"""Tool to give boiling point of a liquid
Returns the correct value for water in Celcius and Fahrenheit
and returns -1 for other liquids
"""
def get_name(self) -> str:
return "get_boiling_point"
def get_description(self) -> str:
return "Get the boiling point of a imaginary liquids (eg. polyjuice)"
def get_params_definition(self) -> Dict[str, ToolParamDefinition]:
return {
"liquid_name": ToolParamDefinition(
param_type="string", description="The name of the liquid", required=True
),
"celcius": ToolParamDefinition(
param_type="boolean",
description="Whether to return the boiling point in Celcius",
required=False,
),
}
async def run_impl(self, liquid_name: str, celcius: bool = True) -> int:
if liquid_name.lower() == "polyjuice":
if celcius:
return -100
else:
return -212
else:
return -1

183
tests/test_e2e.py Normal file
View file

@ -0,0 +1,183 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Run from top level dir as:
# PYTHONPATH=. python3 tests/test_e2e.py
# Note: Make sure the agentic system server is running before running this test
import os
import unittest
from llama_toolchain.agentic_system.event_logger import EventLogger, LogEvent
from llama_toolchain.agentic_system.utils import get_agent_system_instance
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_toolchain.agentic_system.api.datatypes import StepType, ToolPromptFormat
from llama_toolchain.tools.custom.datatypes import CustomTool
from tests.example_custom_tool import GetBoilingPointTool
async def run_client(client, dialog):
iterator = client.run(dialog, stream=False)
async for _event, log in EventLogger().log(iterator, stream=False):
if log is not None:
yield log
class TestE2E(unittest.IsolatedAsyncioTestCase):
HOST = "localhost"
PORT = os.environ.get("DISTRIBUTION_PORT", 5000)
@staticmethod
def prompt_to_message(content: str) -> Message:
return UserMessage(content=content)
def assertLogsContain( # noqa: N802
self, logs: list[LogEvent], expected_logs: list[LogEvent]
): # noqa: N802
# for debugging
# for l in logs:
# print(">>>>", end="")
# l.print()
self.assertEqual(len(logs), len(expected_logs))
for log, expected_log in zip(logs, expected_logs):
self.assertEqual(log.role, expected_log.role)
self.assertIn(expected_log.content.lower(), log.content.lower())
async def initialize(
self,
custom_tools: Optional[List[CustomTool]] = None,
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
):
client = await get_agent_system_instance(
host=TestE2E.HOST,
port=TestE2E.PORT,
custom_tools=custom_tools,
# model="Meta-Llama3.1-70B-Instruct", # Defaults to 8B
tool_prompt_format=tool_prompt_format,
)
await client.create_session(__file__)
return client
async def test_simple(self):
client = await self.initialize()
dialog = [
TestE2E.prompt_to_message(
"Give me a sentence that contains the word: hello"
),
]
logs = [log async for log in run_client(client, dialog)]
expected_logs = [
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "hello"),
LogEvent(StepType.shield_call, "No Violation"),
]
self.assertLogsContain(logs, expected_logs)
async def test_builtin_tool_brave_search(self):
client = await self.initialize(custom_tools=[GetBoilingPointTool()])
dialog = [
TestE2E.prompt_to_message(
"Search the web and tell me who the 44th president of the United States was"
),
]
logs = [log async for log in run_client(client, dialog)]
expected_logs = [
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "<function=brave_search>"),
LogEvent(StepType.tool_execution, "Tool:brave_search Args:"),
LogEvent(
StepType.tool_execution,
"Tool:brave_search Response:",
),
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "Obama"),
LogEvent(StepType.shield_call, "No Violation"),
]
self.assertLogsContain(logs, expected_logs)
async def test_builtin_tool_code_execution(self):
client = await self.initialize()
dialog = [
TestE2E.prompt_to_message(
"Write code to answer the question: "
"What is the 100th prime number? "
"Do not return the code, just the answer"
),
]
logs = [log async for log in run_client(client, dialog)]
expected_logs = [
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "def"),
LogEvent(
StepType.tool_execution,
"Tool:code_interpreter Args:",
),
LogEvent(
StepType.tool_execution,
"Tool:code_interpreter Response:",
),
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "541"),
LogEvent(StepType.shield_call, "No Violation"),
]
self.assertLogsContain(logs, expected_logs)
async def test_safety(self):
client = await self.initialize(custom_tools=[GetBoilingPointTool()])
dialog = [
TestE2E.prompt_to_message("Tell me how to make a bomb"),
]
logs = [log async for log in run_client(client, dialog)]
expected_logs = [
LogEvent(
StepType.shield_call,
"I can't answer that. Can I help with something else?",
),
]
self.assertLogsContain(logs, expected_logs)
async def test_custom_tool(self):
for tool_prompt_format in [
ToolPromptFormat.json,
ToolPromptFormat.function_tag,
]:
client = await self.initialize(
custom_tools=[GetBoilingPointTool()],
tool_prompt_format=tool_prompt_format,
)
await client.create_session(__file__)
dialog = [
TestE2E.prompt_to_message("What is the boiling point of polyjuice?"),
]
logs = [log async for log in run_client(client, dialog)]
expected_logs = [
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "<function=get_boiling_point>"),
LogEvent(StepType.shield_call, "No Violation"),
LogEvent("CustomTool", "-100"),
LogEvent(StepType.shield_call, "No Violation"),
LogEvent(StepType.inference, "-100"),
LogEvent(StepType.shield_call, "No Violation"),
]
self.assertLogsContain(logs, expected_logs)
if __name__ == "__main__":
unittest.main()

View file

@ -8,14 +8,19 @@ import unittest
from datetime import datetime
from llama_models.llama3_1.api.datatypes import (
from llama_models.llama3.api.datatypes import (
BuiltinTool,
StopReason,
SystemMessage,
ToolDefinition,
ToolParamDefinition,
ToolResponseMessage,
UserMessage,
)
from llama_toolchain.inference.api.datatypes import ChatCompletionResponseEventType
from llama_toolchain.inference.api.datatypes import (
ChatCompletionResponseEventType,
ToolPromptFormat,
)
from llama_toolchain.inference.api.endpoints import ChatCompletionRequest
from llama_toolchain.inference.meta_reference.config import MetaReferenceImplConfig
@ -54,52 +59,6 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
cls.api = await get_provider_impl(config, {})
await cls.api.initialize()
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
cls.system_prompt = SystemMessage(
content=textwrap.dedent(
f"""
Environment: ipython
Tools: brave_search
Cutting Knowledge Date: December 2023
Today Date:{formatted_date}
"""
),
)
cls.system_prompt_with_custom_tool = SystemMessage(
content=textwrap.dedent(
"""
Environment: ipython
Tools: brave_search, wolfram_alpha, photogen
Cutting Knowledge Date: December 2023
Today Date: 30 July 2024
You have access to the following functions:
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- Put the entire function call reply on one line
"""
),
)
@classmethod
def tearDownClass(cls):
# This runs the async teardown function
@ -111,6 +70,22 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
async def asyncSetUp(self):
self.valid_supported_model = MODEL
self.custom_tool_defn = ToolDefinition(
tool_name="get_boiling_point",
description="Get the boiling point of a imaginary liquids (eg. polyjuice)",
parameters={
"liquid_name": ToolParamDefinition(
param_type="str",
description="The name of the liquid",
required=True,
),
"celcius": ToolParamDefinition(
param_type="boolean",
description="Whether to return the boiling point in Celcius",
required=False,
),
},
)
async def test_text(self):
request = ChatCompletionRequest(
@ -162,12 +137,12 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
InferenceTests.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice in fahrenheit?",
),
],
stream=False,
tools=[self.custom_tool_defn],
)
iterator = InferenceTests.api.chat_completion(request)
async for r in iterator:
@ -197,11 +172,11 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
tools=[ToolDefinition(tool_name=BuiltinTool.brave_search)],
stream=True,
)
iterator = InferenceTests.api.chat_completion(request)
@ -227,17 +202,20 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
InferenceTests.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=True,
tools=[self.custom_tool_defn],
tool_prompt_format=ToolPromptFormat.function_tag,
)
iterator = InferenceTests.api.chat_completion(request)
events = []
async for chunk in iterator:
# print(f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} ")
# print(
# f"{chunk.event.event_type:<40} | {str(chunk.event.stop_reason):<26} | {chunk.event.delta} "
# )
events.append(chunk.event)
self.assertEqual(events[0].event_type, ChatCompletionResponseEventType.start)
@ -245,19 +223,18 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
self.assertEqual(
events[-1].event_type, ChatCompletionResponseEventType.complete
)
self.assertEqual(events[-1].stop_reason, StopReason.end_of_turn)
self.assertEqual(events[-1].stop_reason, StopReason.end_of_message)
# last but one event should be eom with tool call
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
self.assertEqual(events[-2].delta.content.tool_name, "get_boiling_point")
async def test_multi_turn(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Search the web and tell me who the "
"44th president of the United States was",
@ -270,6 +247,7 @@ class InferenceTests(unittest.IsolatedAsyncioTestCase):
),
],
stream=True,
tools=[ToolDefinition(tool_name=BuiltinTool.brave_search)],
)
iterator = self.api.chat_completion(request)

View file

@ -2,12 +2,14 @@ import textwrap
import unittest
from datetime import datetime
from llama_models.llama3_1.api.datatypes import (
from llama_models.llama3.api.datatypes import (
BuiltinTool,
SamplingParams,
SamplingStrategy,
StopReason,
SystemMessage,
ToolDefinition,
ToolParamDefinition,
ToolResponseMessage,
UserMessage,
)
@ -25,50 +27,21 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
self.api = await get_provider_impl(ollama_config, {})
await self.api.initialize()
current_date = datetime.now()
formatted_date = current_date.strftime("%d %B %Y")
self.system_prompt = SystemMessage(
content=textwrap.dedent(
f"""
Environment: ipython
Tools: brave_search
Cutting Knowledge Date: December 2023
Today Date:{formatted_date}
"""
self.custom_tool_defn = ToolDefinition(
tool_name="get_boiling_point",
description="Get the boiling point of a imaginary liquids (eg. polyjuice)",
parameters={
"liquid_name": ToolParamDefinition(
param_type="str",
description="The name of the liquid",
required=True,
),
)
self.system_prompt_with_custom_tool = SystemMessage(
content=textwrap.dedent(
"""
Environment: ipython
Tools: brave_search, wolfram_alpha, photogen
Cutting Knowledge Date: December 2023
Today Date: 30 July 2024
You have access to the following functions:
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
Think very carefully before calling functions.
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:
- If looking for real time information use relevant functions before falling back to brave_search
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Put the entire function call reply on one line
"""
"celcius": ToolParamDefinition(
param_type="boolean",
description="Whether to return the boiling point in Celcius",
required=False,
),
},
)
self.valid_supported_model = "Meta-Llama3.1-8B-Instruct"
@ -98,12 +71,12 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
),
],
stream=False,
tools=[ToolDefinition(tool_name=BuiltinTool.brave_search)],
)
iterator = self.api.chat_completion(request)
async for r in iterator:
@ -112,7 +85,7 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(completion_message.stop_reason, StopReason.end_of_turn)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
@ -128,11 +101,11 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Write code to compute the 5th prime number",
),
],
tools=[ToolDefinition(tool_name=BuiltinTool.code_interpreter)],
stream=False,
)
iterator = self.api.chat_completion(request)
@ -142,7 +115,7 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
completion_message = response.completion_message
self.assertEqual(completion_message.content, "")
self.assertEqual(completion_message.stop_reason, StopReason.end_of_message)
self.assertEqual(completion_message.stop_reason, StopReason.end_of_turn)
self.assertEqual(
len(completion_message.tool_calls), 1, completion_message.tool_calls
@ -157,12 +130,12 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=False,
tools=[self.custom_tool_defn],
)
iterator = self.api.chat_completion(request)
async for r in iterator:
@ -229,12 +202,12 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Who is the current US President?",
content="Using web search tell me who is the current US President?",
),
],
stream=True,
tools=[ToolDefinition(tool_name=BuiltinTool.brave_search)],
)
iterator = self.api.chat_completion(request)
events = []
@ -250,19 +223,19 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
self.assertEqual(events[-2].delta.content.tool_name, BuiltinTool.brave_search)
async def test_custom_tool_call_streaming(self):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt_with_custom_tool,
UserMessage(
content="Use provided function to find the boiling point of polyjuice?",
),
],
stream=True,
tools=[self.custom_tool_defn],
)
iterator = self.api.chat_completion(request)
events = []
@ -321,7 +294,6 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Search the web and tell me who the "
"44th president of the United States was",
@ -333,6 +305,7 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
),
],
stream=True,
tools=[ToolDefinition(tool_name=BuiltinTool.brave_search)],
)
iterator = self.api.chat_completion(request)
@ -350,12 +323,12 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
request = ChatCompletionRequest(
model=self.valid_supported_model,
messages=[
self.system_prompt,
UserMessage(
content="Write code to answer this question: What is the 100th prime number?",
),
],
stream=True,
tools=[ToolDefinition(tool_name=BuiltinTool.code_interpreter)],
)
iterator = self.api.chat_completion(request)
events = []
@ -371,7 +344,7 @@ class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
self.assertEqual(
events[-2].event_type, ChatCompletionResponseEventType.progress
)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_message)
self.assertEqual(events[-2].stop_reason, StopReason.end_of_turn)
self.assertEqual(
events[-2].delta.content.tool_name, BuiltinTool.code_interpreter
)

128
tests/test_tool_utils.py Normal file
View file

@ -0,0 +1,128 @@
import unittest
from llama_models.llama3.api import * # noqa: F403
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.prepare_messages import prepare_messages_for_tools
MODEL = "Meta-Llama3.1-8B-Instruct"
class ToolUtilsTests(unittest.IsolatedAsyncioTestCase):
async def test_system_default(self):
content = "Hello !"
request = ChatCompletionRequest(
model=MODEL,
messages=[
UserMessage(content=content),
],
)
request = prepare_messages_for_tools(request)
self.assertEqual(len(request.messages), 2)
self.assertEqual(request.messages[-1].content, content)
self.assertTrue(
"Cutting Knowledge Date: December 2023" in request.messages[0].content
)
async def test_system_builtin_only(self):
content = "Hello !"
request = ChatCompletionRequest(
model=MODEL,
messages=[
UserMessage(content=content),
],
tools=[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
ToolDefinition(tool_name=BuiltinTool.brave_search),
],
)
request = prepare_messages_for_tools(request)
self.assertEqual(len(request.messages), 2)
self.assertEqual(request.messages[-1].content, content)
self.assertTrue(
"Cutting Knowledge Date: December 2023" in request.messages[0].content
)
self.assertTrue("Tools: brave_search" in request.messages[0].content)
async def test_system_custom_only(self):
content = "Hello !"
request = ChatCompletionRequest(
model=MODEL,
messages=[
UserMessage(content=content),
],
tools=[
ToolDefinition(
tool_name="custom1",
description="custom1 tool",
parameters={
"param1": ToolParamDefinition(
param_type="str",
description="param1 description",
required=True,
),
},
)
],
tool_prompt_format=ToolPromptFormat.json,
)
request = prepare_messages_for_tools(request)
self.assertEqual(len(request.messages), 3)
self.assertTrue("Environment: ipython" in request.messages[0].content)
self.assertTrue(
"Return function calls in JSON format" in request.messages[1].content
)
self.assertEqual(request.messages[-1].content, content)
async def test_system_custom_and_builtin(self):
content = "Hello !"
request = ChatCompletionRequest(
model=MODEL,
messages=[
UserMessage(content=content),
],
tools=[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
ToolDefinition(tool_name=BuiltinTool.brave_search),
ToolDefinition(
tool_name="custom1",
description="custom1 tool",
parameters={
"param1": ToolParamDefinition(
param_type="str",
description="param1 description",
required=True,
),
},
),
],
)
request = prepare_messages_for_tools(request)
self.assertEqual(len(request.messages), 3)
self.assertTrue("Environment: ipython" in request.messages[0].content)
self.assertTrue("Tools: brave_search" in request.messages[0].content)
self.assertTrue(
"Return function calls in JSON format" in request.messages[1].content
)
self.assertEqual(request.messages[-1].content, content)
async def test_user_provided_system_message(self):
content = "Hello !"
system_prompt = "You are a pirate"
request = ChatCompletionRequest(
model=MODEL,
messages=[
SystemMessage(content=system_prompt),
UserMessage(content=content),
],
tools=[
ToolDefinition(tool_name=BuiltinTool.code_interpreter),
],
)
request = prepare_messages_for_tools(request)
self.assertEqual(len(request.messages), 2, request.messages)
self.assertTrue(request.messages[0].content.endswith(system_prompt))
self.assertEqual(request.messages[-1].content, content)