diff --git a/src/llama_stack/providers/inline/inference/meta_reference/inference.py b/src/llama_stack/providers/inline/inference/meta_reference/inference.py index 286335a7d..76d3fdd50 100644 --- a/src/llama_stack/providers/inline/inference/meta_reference/inference.py +++ b/src/llama_stack/providers/inline/inference/meta_reference/inference.py @@ -146,7 +146,7 @@ class MetaReferenceInferenceImpl( def check_model(self, request) -> None: if self.model_id is None or self.llama_model is None: raise RuntimeError( - "No avaible model yet, please register your requested model or add your model in the resouces first" + "No available model yet, please register your requested model or add your model in the resources first" ) elif request.model != self.model_id: raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}") diff --git a/src/llama_stack/providers/inline/post_training/torchtune/common/checkpointer.py b/src/llama_stack/providers/inline/post_training/torchtune/common/checkpointer.py index af8bd2765..43e206490 100644 --- a/src/llama_stack/providers/inline/post_training/torchtune/common/checkpointer.py +++ b/src/llama_stack/providers/inline/post_training/torchtune/common/checkpointer.py @@ -91,7 +91,7 @@ class TorchtuneCheckpointer: if checkpoint_format == "meta" or checkpoint_format is None: self._save_meta_format_checkpoint(model_file_path, state_dict, adapter_only) elif checkpoint_format == "huggingface": - # Note: for saving hugging face format checkpoints, we only suppport saving adapter weights now + # Note: for saving hugging face format checkpoints, we only support saving adapter weights now self._save_hf_format_checkpoint(model_file_path, state_dict) else: raise ValueError(f"Unsupported checkpoint format: {format}") diff --git a/src/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py b/src/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py index 96dd8b8dd..47452efa4 100644 --- a/src/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py +++ b/src/llama_stack/providers/inline/post_training/torchtune/datasets/format_adapter.py @@ -25,7 +25,7 @@ def llama_stack_instruct_to_torchtune_instruct( ) input_messages = json.loads(sample[ColumnName.chat_completion_input.value]) - assert len(input_messages) == 1, "llama stack intruct dataset format only supports 1 user message" + assert len(input_messages) == 1, "llama stack instruct dataset format only supports 1 user message" input_message = input_messages[0] assert "content" in input_message, "content not found in input message"