feat: add agent workflow metrics collection

Add comprehensive OpenTelemetry-based metrics for agent observability:

- Workflow completion/failure tracking with duration measurements
- Step execution counters for performance monitoring
- Tool usage tracking with normalized tool names
- Non-blocking telemetry emission with named async tasks
- Comprehensive unit and integration test coverage
- Graceful handling when telemetry is disabled
This commit is contained in:
skamenan7 2025-08-06 17:08:03 -04:00
parent 4c2fcb6b51
commit 69b692af91
13 changed files with 701 additions and 11 deletions

View file

@ -0,0 +1,292 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import Mock
import pytest
from llama_stack.apis.telemetry import MetricEvent, MetricType
from llama_stack.providers.inline.telemetry.meta_reference.config import TelemetryConfig
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import TelemetryAdapter
class TestAgentMetricsHistogram:
"""Unit tests for histogram support in telemetry adapter for agent metrics"""
@pytest.fixture
def telemetry_config(self):
"""Basic telemetry config for testing"""
return TelemetryConfig(
service_name="test-service",
sinks=[],
)
@pytest.fixture
def telemetry_adapter(self, telemetry_config):
"""TelemetryAdapter with mocked meter"""
adapter = TelemetryAdapter(telemetry_config, {})
# Mock the meter to avoid OpenTelemetry setup
adapter.meter = Mock()
return adapter
def test_get_or_create_histogram_new(self, telemetry_adapter):
"""Test creating a new histogram"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage to ensure clean state
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
result = telemetry_adapter._get_or_create_histogram("test_histogram", "s", [0.1, 0.5, 1.0, 5.0, 10.0])
assert result == mock_histogram
telemetry_adapter.meter.create_histogram.assert_called_once_with(
name="test_histogram",
unit="s",
description="Histogram for test_histogram",
)
assert _GLOBAL_STORAGE["histograms"]["test_histogram"] == mock_histogram
def test_get_or_create_histogram_existing(self, telemetry_adapter):
"""Test retrieving an existing histogram"""
mock_histogram = Mock()
# Pre-populate global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {"existing_histogram": mock_histogram}
result = telemetry_adapter._get_or_create_histogram("existing_histogram", "ms")
assert result == mock_histogram
# Should not create a new histogram
telemetry_adapter.meter.create_histogram.assert_not_called()
def test_log_metric_duration_histogram(self, telemetry_adapter):
"""Test logging duration metrics creates histogram"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric="llama_stack_agent_workflow_duration_seconds",
value=15.7,
timestamp=1234567890.0,
unit="s",
attributes={"agent_id": "test-agent"},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
# Verify histogram was created and recorded
telemetry_adapter.meter.create_histogram.assert_called_once_with(
name="llama_stack_agent_workflow_duration_seconds",
unit="s",
description="Histogram for llama_stack_agent_workflow_duration_seconds",
)
mock_histogram.record.assert_called_once_with(15.7, attributes={"agent_id": "test-agent"})
def test_log_metric_duration_histogram_default_buckets(self, telemetry_adapter):
"""Test that duration metrics use default buckets"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric="custom_duration_seconds",
value=5.2,
timestamp=1234567890.0,
unit="s",
attributes={},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
# Verify histogram was created (buckets are not passed to create_histogram in OpenTelemetry)
mock_histogram.record.assert_called_once_with(5.2, attributes={})
def test_log_metric_non_duration_counter(self, telemetry_adapter):
"""Test that non-duration metrics still use counters"""
mock_counter = Mock()
telemetry_adapter.meter.create_counter.return_value = mock_counter
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["counters"] = {}
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric="llama_stack_agent_workflows_total",
value=1,
timestamp=1234567890.0,
unit="1",
attributes={"agent_id": "test-agent", "status": "completed"},
)
telemetry_adapter._log_metric(metric_event)
# Verify counter was used, not histogram
telemetry_adapter.meter.create_counter.assert_called_once()
telemetry_adapter.meter.create_histogram.assert_not_called()
mock_counter.add.assert_called_once_with(1, attributes={"agent_id": "test-agent", "status": "completed"})
def test_log_metric_no_meter(self, telemetry_adapter):
"""Test metric logging when meter is None"""
telemetry_adapter.meter = None
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric="test_duration_seconds",
value=1.0,
timestamp=1234567890.0,
unit="s",
attributes={},
)
# Should not raise exception
telemetry_adapter._log_metric(metric_event)
def test_histogram_name_detection_patterns(self, telemetry_adapter):
"""Test various duration metric name patterns"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
duration_metrics = [
"workflow_duration_seconds",
"request_duration_seconds",
"processing_duration_seconds",
"llama_stack_agent_workflow_duration_seconds",
]
for metric_name in duration_metrics:
_GLOBAL_STORAGE["histograms"] = {} # Reset for each test
metric_event = MetricEvent(
trace_id="123",
span_id="456",
metric=metric_name,
value=1.0,
timestamp=1234567890.0,
unit="s",
attributes={},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(metric_event)
mock_histogram.record.assert_called()
# Reset call count for negative test
mock_histogram.record.reset_mock()
telemetry_adapter.meter.create_histogram.reset_mock()
# Test non-duration metric
non_duration_metric = MetricEvent(
trace_id="123",
span_id="456",
metric="workflow_total", # No "_duration_seconds" suffix
value=1,
timestamp=1234567890.0,
unit="1",
attributes={},
)
telemetry_adapter._log_metric(non_duration_metric)
# Should not create histogram for non-duration metric
telemetry_adapter.meter.create_histogram.assert_not_called()
mock_histogram.record.assert_not_called()
def test_histogram_global_storage_isolation(self, telemetry_adapter):
"""Test that histogram storage doesn't interfere with counters"""
mock_histogram = Mock()
mock_counter = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
telemetry_adapter.meter.create_counter.return_value = mock_counter
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
_GLOBAL_STORAGE["counters"] = {}
# Create histogram
duration_metric = MetricEvent(
trace_id="123",
span_id="456",
metric="test_duration_seconds",
value=1.0,
timestamp=1234567890.0,
unit="s",
attributes={},
metric_type=MetricType.HISTOGRAM,
)
telemetry_adapter._log_metric(duration_metric)
# Create counter
counter_metric = MetricEvent(
trace_id="123",
span_id="456",
metric="test_counter",
value=1,
timestamp=1234567890.0,
unit="1",
attributes={},
)
telemetry_adapter._log_metric(counter_metric)
# Verify both were created and stored separately
assert "test_duration_seconds" in _GLOBAL_STORAGE["histograms"]
assert "test_counter" in _GLOBAL_STORAGE["counters"]
assert "test_duration_seconds" not in _GLOBAL_STORAGE["counters"]
assert "test_counter" not in _GLOBAL_STORAGE["histograms"]
def test_histogram_buckets_parameter_ignored(self, telemetry_adapter):
"""Test that buckets parameter doesn't affect histogram creation (OpenTelemetry handles buckets internally)"""
mock_histogram = Mock()
telemetry_adapter.meter.create_histogram.return_value = mock_histogram
# Clear global storage
from llama_stack.providers.inline.telemetry.meta_reference.telemetry import _GLOBAL_STORAGE
_GLOBAL_STORAGE["histograms"] = {}
# Call with buckets parameter
result = telemetry_adapter._get_or_create_histogram(
"test_histogram", "s", buckets=[0.1, 0.5, 1.0, 5.0, 10.0, 25.0, 50.0, 100.0]
)
# Buckets are not passed to OpenTelemetry create_histogram
telemetry_adapter.meter.create_histogram.assert_called_once_with(
name="test_histogram",
unit="s",
description="Histogram for test_histogram",
)
assert result == mock_histogram