docs: Add unsupported search mode info about FAISS (#3089)

This commit is contained in:
Varsha 2025-08-10 16:34:34 -07:00 committed by GitHub
parent ce72a28525
commit 69dc789e15
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 30 additions and 2 deletions

View file

@ -12,6 +12,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use - Lightweight and easy to use
- Fully integrated with Llama Stack - Fully integrated with Llama Stack
- GPU support - GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage ## Usage

View file

@ -174,7 +174,9 @@ class FaissIndex(EmbeddingIndex):
k: int, k: int,
score_threshold: float, score_threshold: float,
) -> QueryChunksResponse: ) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in FAISS") raise NotImplementedError(
"Keyword search is not supported - underlying DB FAISS does not support this search mode"
)
async def query_hybrid( async def query_hybrid(
self, self,
@ -185,7 +187,9 @@ class FaissIndex(EmbeddingIndex):
reranker_type: str, reranker_type: str,
reranker_params: dict[str, Any] | None = None, reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse: ) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS") raise NotImplementedError(
"Hybrid search is not supported - underlying DB FAISS does not support this search mode"
)
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):

View file

@ -45,6 +45,18 @@ That means you'll get fast and efficient vector retrieval.
- Lightweight and easy to use - Lightweight and easy to use
- Fully integrated with Llama Stack - Fully integrated with Llama Stack
- GPU support - GPU support
- **Vector search** - FAISS supports pure vector similarity search using embeddings
## Search Modes
**Supported:**
- **Vector Search** (`mode="vector"`): Performs vector similarity search using embeddings
**Not Supported:**
- **Keyword Search** (`mode="keyword"`): Not supported by FAISS
- **Hybrid Search** (`mode="hybrid"`): Not supported by FAISS
> **Note**: FAISS is designed as a pure vector similarity search library. See the [FAISS GitHub repository](https://github.com/facebookresearch/faiss) for more details about FAISS's core functionality.
## Usage ## Usage