CLI - add back build wizard, configure with name instead of build.yaml (#74)

* add back wizard for build

* conda build path move

* polish message

* run with name only

* prompt for build

* improve comments

* update msgs

* add new lines

* move build.yaml

* address comments

* validator for providers

* move imports

* Please enter -> enter

* comments, get started guide

* nits

* fix cprint import

* fix imports
This commit is contained in:
Xi Yan 2024-09-18 11:41:56 -07:00 committed by GitHub
parent e6fdb9df29
commit 6b21523c28
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 134 additions and 30 deletions

View file

@ -8,43 +8,61 @@ This guides allows you to quickly get started with building and running a Llama
- Quick 3 line command to build and start a LlamaStack server using our Meta Reference implementation for all API endpoints with `conda` as build type.
**`llama stack build`**
- You'll be prompted to enter build information interactively.
```
llama stack build ./llama_stack/distribution/example_configs/conda/local-conda-example-build.yaml --name my-local-llama-stack
...
...
Build spec configuration saved at ~/.llama/distributions/conda/my-local-llama-stack-build.yaml
llama stack build
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): my-local-llama-stack
> Enter the image type you want your distribution to be built with (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
> (Optional) Enter a short description for your Llama Stack distribution:
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/my-local-llama-stack-build.yaml
```
**`llama stack configure`**
```
llama stack configure ~/.llama/distributions/conda/my-local-llama-stack-build.yaml
llama stack configure my-local-llama-stack
Configuring API: inference (meta-reference)
Configuring APIs to serve...
Enter comma-separated list of APIs to serve:
Configuring API `inference`...
Configuring provider `meta-reference`...
Enter value for model (default: Meta-Llama3.1-8B-Instruct) (required):
Enter value for quantization (optional):
Do you want to configure quantization? (y/n): n
Enter value for torch_seed (optional):
Enter value for max_seq_len (required): 4096
Enter value for max_batch_size (default: 1) (required):
Configuring API `safety`...
Configuring API: memory (meta-reference-faiss)
Configuring API: safety (meta-reference)
Configuring provider `meta-reference`...
Do you want to configure llama_guard_shield? (y/n): n
Do you want to configure prompt_guard_shield? (y/n): n
Configuring API `agents`...
Configuring API: agentic_system (meta-reference)
Enter value for brave_search_api_key (optional):
Enter value for bing_search_api_key (optional):
Enter value for wolfram_api_key (optional):
Configuring provider `meta-reference`...
Configuring API `memory`...
Configuring API: telemetry (console)
Configuring provider `meta-reference`...
Configuring API `telemetry`...
YAML configuration has been written to ~/.llama/builds/conda/my-local-llama-stack-run.yaml
Configuring provider `meta-reference`...
> YAML configuration has been written to /home/xiyan/.llama/builds/conda/my-local-llama-stack-run.yaml.
You can now run `llama stack run my-local-llama-stack --port PORT` or `llama stack run /home/xiyan/.llama/builds/conda/my-local-llama-stack-run.yaml --port PORT
```
**`llama stack run`**
```
llama stack run ~/.llama/builds/conda/my-local-llama-stack-run.yaml
llama stack run my-local-llama-stack
...
> initializing model parallel with size 1

View file

@ -29,7 +29,9 @@ class StackBuild(Subcommand):
self.parser.add_argument(
"config",
type=str,
help="Path to a config file to use for the build. You may find example configs in llama_stack/distribution/example_configs",
default=None,
nargs="*",
help="Path to a config file to use for the build. You can find example configs in llama_stack/distribution/example_configs. If this argument is not provided, you will be prompted to enter information interactively",
)
self.parser.add_argument(
@ -44,9 +46,10 @@ class StackBuild(Subcommand):
import json
import os
from llama_stack.distribution.build import ApiInput, build_image, ImageType
from llama_stack.distribution.utils.config_dirs import DISTRIBS_BASE_DIR
from llama_stack.distribution.utils.serialize import EnumEncoder
from llama_stack.distribution.build import ApiInput, build_image, ImageType
from termcolor import cprint
# save build.yaml spec for building same distribution again
@ -57,7 +60,10 @@ class StackBuild(Subcommand):
llama_stack_path / "configs/distributions" / build_config.image_type
)
else:
build_dir = DISTRIBS_BASE_DIR / build_config.image_type
build_dir = (
Path(os.getenv("CONDA_PREFIX")).parent
/ f"llamastack-{build_config.name}"
)
os.makedirs(build_dir, exist_ok=True)
build_file_path = build_dir / f"{build_config.name}-build.yaml"
@ -70,17 +76,76 @@ class StackBuild(Subcommand):
cprint(
f"Build spec configuration saved at {str(build_file_path)}",
color="blue",
)
cprint(
f"You may now run `llama stack configure {build_config.name}` or `llama stack configure {str(build_file_path)}`",
color="green",
)
def _run_stack_build_command(self, args: argparse.Namespace) -> None:
from llama_stack.distribution.utils.prompt_for_config import prompt_for_config
from llama_stack.distribution.distribution import Api, api_providers
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from prompt_toolkit import prompt
from prompt_toolkit.validation import Validator
from termcolor import cprint
if not args.config:
self.parser.error(
"No config file specified. Please use `llama stack build /path/to/*-build.yaml`. Example config files can be found in llama_stack/distribution/example_configs"
name = prompt(
"> Enter a unique name for identifying your Llama Stack build (e.g. my-local-stack): "
)
image_type = prompt(
"> Enter the image type you want your Llama Stack to be built as (docker or conda): ",
validator=Validator.from_callable(
lambda x: x in ["docker", "conda"],
error_message="Invalid image type, please enter conda or docker",
),
default="conda",
)
cprint(
f"\n Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.",
color="green",
)
providers = dict()
for api in Api:
all_providers = api_providers()
providers_for_api = all_providers[api]
api_provider = prompt(
"> Enter the API provider for the {} API: (default=meta-reference): ".format(
api.value
),
validator=Validator.from_callable(
lambda x: x in providers_for_api,
error_message="Invalid provider, please enter one of the following: {}".format(
providers_for_api.keys()
),
),
default=(
"meta-reference"
if "meta-reference" in providers_for_api
else list(providers_for_api.keys())[0]
),
)
providers[api.value] = api_provider
description = prompt(
"\n > (Optional) Enter a short description for your Llama Stack: ",
default="",
)
distribution_spec = DistributionSpec(
providers=providers,
description=description,
)
build_config = BuildConfig(
name=name, image_type=image_type, distribution_spec=distribution_spec
)
self._run_stack_build_command_from_build_config(build_config)
return
with open(args.config, "r") as f:

View file

@ -9,7 +9,6 @@ import json
from pathlib import Path
import yaml
from termcolor import cprint
from llama_stack.cli.subcommand import Subcommand
from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
@ -50,9 +49,12 @@ class StackConfigure(Subcommand):
import pkg_resources
from llama_stack.distribution.build import ImageType
from termcolor import cprint
docker_image = None
build_config_file = Path(args.config)
conda_dir = Path(os.getenv("CONDA_PREFIX")).parent / f"llamastack-{args.config}"
build_config_file = Path(conda_dir) / f"{args.config}-build.yaml"
if not build_config_file.exists():
cprint(
f"Could not find {build_config_file}. Trying docker image name instead...",
@ -79,8 +81,9 @@ class StackConfigure(Subcommand):
)
build_name = docker_image.removeprefix("llamastack-")
saved_file = str(builds_dir / f"{build_name}-run.yaml")
cprint(
f"YAML configuration has been written to {builds_dir / f'{build_name}-run.yaml'}",
f"YAML configuration has been written to {saved_file}. You can now run `llama stack run {saved_file}`",
color="green",
)
return
@ -97,6 +100,7 @@ class StackConfigure(Subcommand):
):
from llama_stack.distribution.configure import configure_api_providers
from llama_stack.distribution.utils.serialize import EnumEncoder
from termcolor import cprint
builds_dir = BUILDS_BASE_DIR / build_config.image_type
if output_dir:
@ -132,6 +136,11 @@ class StackConfigure(Subcommand):
f.write(yaml.dump(to_write, sort_keys=False))
cprint(
f"> YAML configuration has been written to {run_config_file}",
f"> YAML configuration has been written to {run_config_file}.",
color="blue",
)
cprint(
f"You can now run `llama stack run {image_name} --port PORT` or `llama stack run {run_config_file} --port PORT`",
color="green",
)

View file

@ -47,6 +47,8 @@ class StackRun(Subcommand):
def _run_stack_run_cmd(self, args: argparse.Namespace) -> None:
import pkg_resources
from llama_stack.distribution.build import ImageType
from llama_stack.distribution.utils.config_dirs import BUILDS_BASE_DIR
from llama_stack.distribution.utils.exec import run_with_pty
@ -54,12 +56,22 @@ class StackRun(Subcommand):
self.parser.error("Must specify a config file to run")
return
path = args.config
config_file = Path(path)
config_file = Path(args.config)
if not config_file.exists() and not args.config.endswith(".yaml"):
# check if it's a build config saved to conda dir
config_file = Path(
BUILDS_BASE_DIR / ImageType.conda.value / f"{args.config}-run.yaml"
)
if not config_file.exists() and not args.config.endswith(".yaml"):
# check if it's a build config saved to docker dir
config_file = Path(
BUILDS_BASE_DIR / ImageType.docker.value / f"{args.config}-run.yaml"
)
if not config_file.exists():
self.parser.error(
f"File {str(config_file)} does not exist. Did you run `llama stack build`?"
f"File {str(config_file)} does not exist. Please run `llama stack build` and `llama stack configure <name>` to generate a run.yaml file"
)
return