Merge branch 'refs/heads/main' into preprocessors

# Conflicts:
#	llama_stack/distribution/routers/routers.py
#	llama_stack/templates/ollama/build.yaml
#	llama_stack/templates/ollama/run-with-safety.yaml
#	llama_stack/templates/ollama/run.yaml
#	llama_stack/templates/remote-vllm/build.yaml
#	llama_stack/templates/remote-vllm/run-with-safety.yaml
#	llama_stack/templates/remote-vllm/run.yaml
#	llama_stack/templates/together/build.yaml
#	llama_stack/templates/together/run-with-safety.yaml
#	llama_stack/templates/together/run.yaml
This commit is contained in:
ilya-kolchinsky 2025-03-07 16:20:30 +01:00
commit 6b9f673fdb
313 changed files with 181388 additions and 7064 deletions

View file

@ -0,0 +1,89 @@
# Llama Stack Agent Framework
The Llama Stack agent framework is built on a modular architecture that allows for flexible and powerful AI applications. This document explains the key components and how they work together.
## Core Concepts
### 1. Agent Configuration
Agents are configured using the `AgentConfig` class, which includes:
- **Model**: The underlying LLM to power the agent
- **Instructions**: System prompt that defines the agent's behavior
- **Tools**: Capabilities the agent can use to interact with external systems
- **Safety Shields**: Guardrails to ensure responsible AI behavior
```python
from llama_stack_client.lib.agents.agent import Agent
# Create the agent
agent = Agent(
llama_stack_client,
model="meta-llama/Llama-3-70b-chat",
instructions="You are a helpful assistant that can use tools to answer questions.",
tools=["builtin::code_interpreter", "builtin::rag/knowledge_search"],
)
```
### 2. Sessions
Agents maintain state through sessions, which represent a conversation thread:
```python
# Create a session
session_id = agent.create_session(session_name="My conversation")
```
### 3. Turns
Each interaction with an agent is called a "turn" and consists of:
- **Input Messages**: What the user sends to the agent
- **Steps**: The agent's internal processing (inference, tool execution, etc.)
- **Output Message**: The agent's response
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
# Create a turn with streaming response
turn_response = agent.create_turn(
session_id=session_id,
messages=[{"role": "user", "content": "Tell me about Llama models"}],
)
for log in EventLogger().log(turn_response):
log.print()
```
### Non-Streaming
```python
from rich.pretty import pprint
# Non-streaming API
response = agent.create_turn(
session_id=session_id,
messages=[{"role": "user", "content": "Tell me about Llama models"}],
stream=False,
)
print("Inputs:")
pprint(response.input_messages)
print("Output:")
pprint(response.output_message.content)
print("Steps:")
pprint(response.steps)
```
### 4. Steps
Each turn consists of multiple steps that represent the agent's thought process:
- **Inference Steps**: The agent generating text responses
- **Tool Execution Steps**: The agent using tools to gather information
- **Shield Call Steps**: Safety checks being performed
## Agent Execution Loop
Refer to the [Agent Execution Loop](agent_execution_loop) for more details on what happens within an agent turn.

View file

@ -13,7 +13,7 @@ Each agent turn follows these key steps:
3. **Inference Loop**: The agent enters its main execution loop:
- The LLM receives a user prompt (with previous tool outputs)
- The LLM generates a response, potentially with tool calls
- The LLM generates a response, potentially with [tool calls](tools)
- If tool calls are present:
- Tool inputs are safety-checked
- Tools are executed (e.g., web search, code execution)
@ -67,20 +67,28 @@ sequenceDiagram
Each step in this process can be monitored and controlled through configurations. Here's an example that demonstrates monitoring the agent's execution:
```python
from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from rich.pretty import pprint
agent_config = AgentConfig(
# Replace host and port
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
agent = Agent(
client,
# Check with `llama-stack-client models list`
model="Llama3.2-3B-Instruct",
instructions="You are a helpful assistant",
# Enable both RAG and tool usage
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {"vector_db_ids": ["my_docs"]},
},
"builtin::code_interpreter",
],
# Configure safety
# Configure safety (optional)
input_shields=["llama_guard"],
output_shields=["llama_guard"],
# Control the inference loop
@ -90,14 +98,12 @@ agent_config = AgentConfig(
"max_tokens": 2048,
},
)
agent = Agent(client, agent_config)
session_id = agent.create_session("monitored_session")
# Stream the agent's execution steps
response = agent.create_turn(
messages=[{"role": "user", "content": "Analyze this code and run it"}],
attachments=[
documents=[
{
"content": "https://raw.githubusercontent.com/example/code.py",
"mime_type": "text/plain",
@ -108,14 +114,21 @@ response = agent.create_turn(
# Monitor each step of execution
for log in EventLogger().log(response):
if log.event.step_type == "memory_retrieval":
print("Retrieved context:", log.event.retrieved_context)
elif log.event.step_type == "inference":
print("LLM output:", log.event.model_response)
elif log.event.step_type == "tool_execution":
print("Tool call:", log.event.tool_call)
print("Tool response:", log.event.tool_response)
elif log.event.step_type == "shield_call":
if log.event.violation:
print("Safety violation:", log.event.violation)
log.print()
# Using non-streaming API, the response contains input, steps, and output.
response = agent.create_turn(
messages=[{"role": "user", "content": "Analyze this code and run it"}],
documents=[
{
"content": "https://raw.githubusercontent.com/example/code.py",
"mime_type": "text/plain",
}
],
session_id=session_id,
)
pprint(f"Input: {response.input_messages}")
pprint(f"Output: {response.output_message.content}")
pprint(f"Steps: {response.steps}")
```

View file

@ -1,170 +1,124 @@
# Evals
# Evaluations
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing)
The Llama Stack provides a set of APIs in Llama Stack for supporting running evaluations of LLM applications.
- `/datasetio` + `/datasets` API
- `/scoring` + `/scoring_functions` API
- `/eval` + `/benchmarks` API
Llama Stack provides the building blocks needed to run benchmark and application evaluations. This guide will walk you through how to use these components to run open benchmark evaluations. Visit our [Evaluation Concepts](../concepts/evaluation_concepts.md) guide for more details on how evaluations work in Llama Stack, and our [Evaluation Reference](../references/evals_reference/index.md) guide for a comprehensive reference on the APIs.
### 1. Open Benchmark Model Evaluation
This first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:
- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI): Benchmark designed to evaluate multimodal models.
- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions.
This guides walks you through the process of evaluating an LLM application built using Llama Stack. Checkout the [Evaluation Reference](../references/evals_reference/index.md) guide goes over the sets of APIs and developer experience flow of using Llama Stack to run evaluations for benchmark and application use cases. Checkout our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing).
#### 1.1 Running MMMU
- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API.
## Application Evaluation
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)
Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.
In this example, we will show you how to:
1. Build an Agent with Llama Stack
2. Query the agent's sessions, turns, and steps
3. Evaluate the results.
##### Building a Search Agent
```python
import datasets
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
ds = datasets.load_dataset(path="llamastack/mmmu", name="Agriculture", split="dev")
ds = ds.select_columns(["chat_completion_input", "input_query", "expected_answer"])
eval_rows = ds.to_pandas().to_dict(orient="records")
```
- Next, we will run evaluation on an model candidate, we will need to:
- Define a system prompt
- Define an EvalCandidate
- Run evaluate on the dataset
```python
SYSTEM_PROMPT_TEMPLATE = """
You are an expert in Agriculture whose job is to answer questions from the user using images.
First, reason about the correct answer.
Then write the answer in the following format where X is exactly one of A,B,C,D:
Answer: X
Make sure X is one of A,B,C,D.
If you are uncertain of the correct answer, guess the most likely one.
"""
system_message = {
"role": "system",
"content": SYSTEM_PROMPT_TEMPLATE,
}
client.benchmarks.register(
benchmark_id="meta-reference::mmmu",
dataset_id=f"mmmu-{subset}-{split}",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant. Use search tool to answer the questions. ",
tools=["builtin::websearch"],
)
user_prompts = [
"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.",
"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.",
"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.",
]
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::mmmu",
input_rows=eval_rows,
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
"system_message": system_message,
},
},
)
```
session_id = agent.create_session("test-session")
#### 1.2. Running SimpleQA
- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.
- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API.
for prompt in user_prompts:
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
```python
simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/evals"},
metadata={
"path": "llamastack/evals",
"name": "evals__simpleqa",
"split": "train",
},
dataset_schema={
"input_query": {"type": "string"},
"expected_answer": {"type": "string"},
"chat_completion_input": {"type": "chat_completion_input"},
},
)
eval_rows = client.datasetio.get_rows_paginated(
dataset_id=simpleqa_dataset_id,
rows_in_page=5,
)
```
```python
client.benchmarks.register(
benchmark_id="meta-reference::simpleqa",
dataset_id=simpleqa_dataset_id,
scoring_functions=["llm-as-judge::405b-simpleqa"],
)
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
},
},
},
)
for log in EventLogger().log(response):
log.print()
```
### 2. Agentic Evaluation
- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.
- We will continue to use the SimpleQA dataset we used in previous example.
- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.
##### Query Agent Execution Steps
Now, let's look deeper into the agent's execution steps and see if how well our agent performs.
```python
# query the agents session
from rich.pretty import pprint
session_response = client.agents.session.retrieve(
session_id=session_id,
agent_id=agent.agent_id,
)
pprint(session_response)
```
As a sanity check, we will first check if all user prompts is followed by a tool call to `brave_search`.
```python
num_tool_call = 0
for turn in session_response.turns:
for step in turn.steps:
if (
step.step_type == "tool_execution"
and step.tool_calls[0].tool_name == "brave_search"
):
num_tool_call += 1
print(
f"{num_tool_call}/{len(session_response.turns)} user prompts are followed by a tool call to `brave_search`"
)
```
##### Evaluate Agent Responses
Now, we want to evaluate the agent's responses to the user prompts.
1. First, we will process the agent's execution history into a list of rows that can be used for evaluation.
2. Next, we will label the rows with the expected answer.
3. Finally, we will use the `/scoring` API to score the agent's responses.
```python
agent_config = {
"model": "meta-llama/Llama-3.1-405B-Instruct",
"instructions": "You are a helpful assistant",
"sampling_params": {
"strategy": {
"type": "greedy",
},
},
"tools": [
eval_rows = []
expected_answers = [
"Dallas Mavericks and the Minnesota Timberwolves",
"Season 4, Episode 12",
"King Cobra",
]
for i, turn in enumerate(session_response.turns):
eval_rows.append(
{
"type": "brave_search",
"engine": "tavily",
"api_key": userdata.get("TAVILY_SEARCH_API_KEY"),
"input_query": turn.input_messages[0].content,
"generated_answer": turn.output_message.content,
"expected_answer": expected_answers[i],
}
],
"tool_choice": "auto",
"tool_prompt_format": "json",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False,
}
)
response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
"eval_candidate": {
"type": "agent",
"config": agent_config,
},
},
pprint(eval_rows)
scoring_params = {
"basic::subset_of": None,
}
scoring_response = client.scoring.score(
input_rows=eval_rows, scoring_functions=scoring_params
)
pprint(scoring_response)
```

View file

@ -1,30 +0,0 @@
## Testing & Evaluation
Llama Stack provides built-in tools for evaluating your applications:
1. **Benchmarking**: Test against standard datasets
2. **Application Evaluation**: Score your application's outputs
3. **Custom Metrics**: Define your own evaluation criteria
Here's how to set up basic evaluation:
```python
# Create an evaluation task
response = client.benchmarks.register(
benchmark_id="my_eval",
dataset_id="my_dataset",
scoring_functions=["accuracy", "relevance"],
)
# Run evaluation
job = client.eval.run_eval(
benchmark_id="my_eval",
task_config={
"type": "app",
"eval_candidate": {"type": "agent", "config": agent_config},
},
)
# Get results
result = client.eval.job_result(benchmark_id="my_eval", job_id=job.job_id)
```

View file

@ -8,22 +8,24 @@ The best way to get started is to look at this notebook which walks through the
Here are some key topics that will help you build effective agents:
- **[Agent Execution Loop](agent_execution_loop)**
- **[RAG](rag)**
- **[Safety](safety)**
- **[Tools](tools)**
- **[Telemetry](telemetry)**
- **[Evals](evals)**
- **[Agent](agent)**: Understand the components and design patterns of the Llama Stack agent framework.
- **[Agent Execution Loop](agent_execution_loop)**: Understand how agents process information, make decisions, and execute actions in a continuous loop.
- **[RAG (Retrieval-Augmented Generation)](rag)**: Learn how to enhance your agents with external knowledge through retrieval mechanisms.
- **[Tools](tools)**: Extend your agents' capabilities by integrating with external tools and APIs.
- **[Evals](evals)**: Evaluate your agents' effectiveness and identify areas for improvement.
- **[Telemetry](telemetry)**: Monitor and analyze your agents' performance and behavior.
- **[Safety](safety)**: Implement guardrails and safety measures to ensure responsible AI behavior.
```{toctree}
:hidden:
:maxdepth: 1
agent
agent_execution_loop
rag
safety
tools
telemetry
evals
advanced_agent_patterns
safety
```

View file

@ -1,8 +1,8 @@
## Using "Memory" or Retrieval Augmented Generation (RAG)
## Using Retrieval Augmented Generation (RAG)
Memory enables your applications to reference and recall information from previous interactions or external documents.
RAG enables your applications to reference and recall information from previous interactions or external documents.
Llama Stack organizes the memory APIs into three layers:
Llama Stack organizes the APIs that enable RAG into three layers:
- the lowermost APIs deal with raw storage and retrieval. These include Vector IO, KeyValue IO (coming soon) and Relational IO (also coming soon.)
- next is the "Rag Tool", a first-class tool as part of the Tools API that allows you to ingest documents (from URLs, files, etc) with various chunking strategies and query them smartly.
- finally, it all comes together with the top-level "Agents" API that allows you to create agents that can use the tools to answer questions, perform tasks, and more.
@ -20,6 +20,11 @@ We may add more storage types like Graph IO in the future.
Here's how to set up a vector database for RAG:
```python
# Create http client
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}")
# Register a vector db
vector_db_id = "my_documents"
response = client.vector_dbs.register(
@ -81,15 +86,14 @@ results = client.tool_runtime.rag_tool.query(
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
```python
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.agent import Agent
# Configure agent with memory
agent_config = AgentConfig(
model="meta-llama/Llama-3.2-3B-Instruct",
# Create agent with memory
agent = Agent(
client,
model="meta-llama/Llama-3.3-70B-Instruct",
instructions="You are a helpful assistant",
enable_session_persistence=False,
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
@ -98,10 +102,21 @@ agent_config = AgentConfig(
}
],
)
agent = Agent(client, agent_config)
session_id = agent.create_session("rag_session")
# Ask questions about documents in the vector db, and the agent will query the db to answer the question.
response = agent.create_turn(
messages=[{"role": "user", "content": "How to optimize memory in PyTorch?"}],
session_id=session_id,
)
```
> **NOTE:** the `instructions` field in the `AgentConfig` can be used to guide the agent's behavior. It is important to experiment with different instructions to see what works best for your use case.
You can also pass documents along with the user's message and ask questions about them.
```python
# Initial document ingestion
response = agent.create_turn(
messages=[
@ -109,7 +124,7 @@ response = agent.create_turn(
],
documents=[
{
"content": "https://raw.githubusercontent.com/example/doc.rst",
"content": "https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/memory_optimizations.rst",
"mime_type": "text/plain",
}
],
@ -123,6 +138,14 @@ response = agent.create_turn(
)
```
You can print the response with below.
```python
from llama_stack_client.lib.agents.event_logger import EventLogger
for log in EventLogger().log(response):
log.print()
```
### Unregistering Vector DBs
If you need to clean up and unregister vector databases, you can do so as follows:

View file

@ -5,7 +5,7 @@ An example of this would be a "db_access" tool group that contains tools for int
Tools are treated as any other resource in llama stack like models. You can register them, have providers for them etc.
When instatiating an agent, you can provide it a list of tool groups that it has access to. Agent gets the corresponding tool definitions for the specified tool groups and passes them along to the model.
When instantiating an agent, you can provide it a list of tool groups that it has access to. Agent gets the corresponding tool definitions for the specified tool groups and passes them along to the model.
Refer to the [Building AI Applications](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) notebook for more examples on how to use tools.
@ -60,7 +60,7 @@ Features:
- Disabled dangerous system operations
- Configurable execution timeouts
> ⚠️ Important: The code interpreter tool can operate in a controlled enviroment locally or on Podman containers. To ensure proper functionality in containerised environments:
> ⚠️ Important: The code interpreter tool can operate in a controlled environment locally or on Podman containers. To ensure proper functionality in containerized environments:
> - The container requires privileged access (e.g., --privileged).
> - Users without sufficient permissions may encounter permission errors. (`bwrap: Can't mount devpts on /newroot/dev/pts: Permission denied`)
> - 🔒 Security Warning: Privileged mode grants elevated access and bypasses security restrictions. Use only in local, isolated, or controlled environments.
@ -83,15 +83,15 @@ result = client.tool_runtime.invoke_tool(
)
```
#### Memory
#### RAG
The Memory tool enables retrieval of context from various types of memory banks (vector, key-value, keyword, and graph).
The RAG tool enables retrieval of context from various types of memory banks (vector, key-value, keyword, and graph).
```python
# Register Memory tool group
client.toolgroups.register(
toolgroup_id="builtin::memory",
provider_id="memory",
toolgroup_id="builtin::rag",
provider_id="faiss",
args={"max_chunks": 5, "max_tokens_in_context": 4096},
)
```
@ -102,7 +102,7 @@ Features:
- Context retrieval with token limits
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, code interpreter and memory, that are provided by tavily-search, code-interpreter and memory providers.
> **Note:** By default, llama stack run.yaml defines toolgroups for web search, code interpreter and rag, that are provided by tavily-search, code-interpreter and rag providers.
## Model Context Protocol (MCP) Tools
@ -125,50 +125,35 @@ MCP tools require:
- Tools are discovered dynamically from the endpoint
## Tools provided by the client
## Adding Custom Tools
These tools are registered along with the agent config and are specific to the agent for which they are registered. The main difference between these tools and the tools provided by the built-in providers is that the execution of these tools is handled by the client and the agent transfers the tool call to the client and waits for the result from the client.
When you want to use tools other than the built-in tools, you can implement a python function and decorate it with `@client_tool`.
To define a custom tool, you need to use the `@client_tool` decorator.
```python
from llama_stack_client.lib.agents.client_tool import client_tool
# Example tool definition
@client_tool
def my_tool(input: int) -> int:
"""
Runs my awesome tool.
:param input: some int parameter
"""
return input * 2
```
> **NOTE:** We employ python docstrings to describe the tool and the parameters. It is important to document the tool and the parameters so that the model can use the tool correctly. It is recommended to experiment with different docstrings to see how they affect the model's behavior.
Once defined, simply pass the tool to the agent config. `Agent` will take care of the rest (calling the model with the tool definition, executing the tool, and returning the result to the model for the next iteration).
```python
# Example agent config with client provided tools
config = AgentConfig(
toolgroups=[
"builtin::websearch",
],
client_tools=[ToolDef(name="client_tool", description="Client provided tool")],
)
agent = Agent(client, ..., tools=[my_tool])
```
Refer to [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/e2e_loop_with_client_tools.py) for an example of how to use client provided tools.
## Tool Structure
Each tool has the following components:
- `name`: Unique identifier for the tool
- `description`: Human-readable description of the tool's functionality
- `parameters`: List of parameters the tool accepts
- `name`: Parameter name
- `parameter_type`: Data type (string, number, etc.)
- `description`: Parameter description
- `required`: Whether the parameter is required (default: true)
- `default`: Default value if any
Example tool definition:
```python
{
"name": "web_search",
"description": "Search the web for information",
"parameters": [
{
"name": "query",
"parameter_type": "string",
"description": "The query to search for",
"required": True,
}
],
}
```
## Tool Invocation
@ -201,10 +186,10 @@ group_tools = client.tools.list_tools(toolgroup_id="search_tools")
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.types.agent_create_params import AgentConfig
# Configure the AI agent with necessary parameters
agent_config = AgentConfig(
# Instantiate the AI agent with the given configuration
agent = Agent(
client,
name="code-interpreter",
description="A code interpreter agent for executing Python code snippets",
instructions="""
@ -212,14 +197,10 @@ agent_config = AgentConfig(
Always show the generated code, never generate your own code, and never anticipate results.
""",
model="meta-llama/Llama-3.2-3B-Instruct",
toolgroups=["builtin::code_interpreter"],
tools=["builtin::code_interpreter"],
max_infer_iters=5,
enable_session_persistence=False,
)
# Instantiate the AI agent with the given configuration
agent = Agent(client, agent_config)
# Start a session
session_id = agent.create_session("tool_session")

View file

@ -24,17 +24,8 @@ The Evaluation APIs are associated with a set of Resources as shown in the follo
- Associated with `Benchmark` resource.
Use the following decision tree to decide how to use LlamaStack Evaluation flow.
![Eval Flow](../references/evals_reference/resources/eval-flow.png)
```{admonition} Note on Benchmark v.s. Application Evaluation
:class: tip
- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation.
- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge).
```
## What's Next?
- Check out our Colab notebook on working examples with evaluations [here](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing).
- Check out our Colab notebook on working examples with running benchmark evaluations [here](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb#scrollTo=mxLCsP4MvFqP).
- Check out our [Building Applications - Evaluation](../building_applications/evals.md) guide for more details on how to use the Evaluation APIs to evaluate your applications.
- Check out our [Evaluation Reference](../references/evals_reference/index.md) for more details on the APIs.

View file

@ -1,5 +1,13 @@
# Core Concepts
```{toctree}
:maxdepth: 1
:hidden:
evaluation_concepts
```
Given Llama Stack's service-oriented philosophy, a few concepts and workflows arise which may not feel completely natural in the LLM landscape, especially if you are coming with a background in other frameworks.
@ -26,7 +34,7 @@ We are working on adding a few more APIs to complete the application lifecycle.
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, FAISS, PGVector, etc.),
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
Providers come in two flavors:

View file

@ -13,13 +13,19 @@
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
from docutils import nodes
import tomli # Import tomli for TOML parsing
from pathlib import Path
import requests
import json
# Read version from pyproject.toml
with Path(__file__).parent.parent.parent.joinpath("pyproject.toml").open("rb") as f:
pyproject = tomli.load(f)
llama_stack_version = pyproject["project"]["version"]
pypi_url = "https://pypi.org/pypi/llama-stack/json"
version_tag = json.loads(requests.get(pypi_url).text)["info"]["version"]
print(f"{version_tag=}")
# generate the full link including text and url here
llama_stack_version_url = f"https://github.com/meta-llama/llama-stack/releases/tag/v{version_tag}"
llama_stack_version_link = f"<a href='{llama_stack_version_url}'>release notes</a>"
project = "llama-stack"
copyright = "2025, Meta"
@ -73,7 +79,8 @@ myst_enable_extensions = [
myst_substitutions = {
"docker_hub": "https://hub.docker.com/repository/docker/llamastack",
"llama_stack_version": llama_stack_version,
"llama_stack_version": version_tag,
"llama_stack_version_link": llama_stack_version_link,
}
suppress_warnings = ['myst.header']

View file

@ -17,25 +17,31 @@ Here are some example PRs to help you get started:
## Testing the Provider
Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --template together`.
### 1. Integration Testing
- Create integration tests that use real provider instances and configurations
- For remote services, test actual API interactions
- Avoid mocking at the provider level since adapter layers tend to be thin
- Reference examples in {repopath}`tests/client-sdk`
### 2. Unit Testing (Optional)
- Add unit tests for provider-specific functionality
- See examples in {repopath}`llama_stack/providers/tests/inference/test_text_inference.py`
Integration tests are located in {repopath}`tests/integration`. These tests use the python client-SDK APIs (from the `llama_stack_client` package) to test functionality. Since these tests use client APIs, they can be run either by pointing to an instance of the Llama Stack server or "inline" by using `LlamaStackAsLibraryClient`.
Consult {repopath}`tests/integration/README.md` for more details on how to run the tests.
Note that each provider's `sample_run_config()` method (in the configuration class for that provider)
typically references some environment variables for specifying API keys and the like. You can set these in the environment or pass these via the `--env` flag to the test command.
### 2. Unit Testing
Unit tests are located in {repopath}`tests/unit`. Provider-specific unit tests are located in {repopath}`tests/unit/providers`. These tests are all run automatically as part of the CI process.
### 3. Additional end-to-end testing
### 3. End-to-End Testing
1. Start a Llama Stack server with your new provider
2. Test using client requests
3. Verify compatibility with existing client scripts in the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) repository
4. Document which scripts are compatible with your provider
2. Verify compatibility with existing client scripts in the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main) repository
3. Document which scripts are compatible with your provider
## Submitting Your PR
1. Ensure all tests pass
2. Include a comprehensive test plan in your PR summary
3. Document any known limitations or considerations
4. Submit your pull request for review

View file

@ -4,6 +4,35 @@
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
### Setting your log level
In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format:
`LLAMA_STACK_LOGGING=server=debug;core=info`
Where each category in the following list:
- all
- core
- server
- router
- inference
- agents
- safety
- eval
- tools
- client
Can be set to any of the following log levels:
- debug
- info
- warning
- error
- critical
The default global log level is `info`. `all` sets the log level for all components.
### Llama Stack Build
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
@ -30,7 +59,7 @@ Build a Llama stack container
options:
-h, --help show this help message and exit
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distribution/**/build.yaml.
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml.
If this argument is not provided, you will be prompted to enter information interactively
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates
--list-templates Show the available templates for building a Llama Stack distribution
@ -106,7 +135,7 @@ It would be best to start with a template and understand the structure of the co
llama stack build
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or conda): conda
> Enter the image type you want your Llama Stack to be built as (container or conda or venv): conda
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
@ -187,14 +216,14 @@ usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--disable-i
[--tls-certfile TLS_CERTFILE] [--image-type {conda,container,venv}]
config
start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
positional arguments:
config Path to config file to use for the run
options:
-h, --help show this help message and exit
--port PORT Port to run the server on. Defaults to 8321
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. Defaults to 8321
--image-name IMAGE_NAME
Name of the image to run. Defaults to the current conda environment
--disable-ipv6 Disable IPv6 support

View file

@ -23,7 +23,7 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |

View file

@ -42,12 +42,31 @@ The following environment variables can be configured:
## Prerequisite: Downloading Models
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
```
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
$ llama model list --downloaded
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
```
## Running the Distribution

View file

@ -42,12 +42,31 @@ The following environment variables can be configured:
## Prerequisite: Downloading Models
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
Please use `llama model list --downloaded` to check that you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
```
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
$ llama model list --downloaded
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
```
## Running the Distribution

View file

@ -23,7 +23,7 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` |

View file

@ -22,7 +22,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |

View file

@ -36,7 +36,7 @@ The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080}/v1`)
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080/v1`)
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)

View file

@ -23,7 +23,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |

View file

@ -38,7 +38,7 @@ The API is **exactly identical** for both clients.
:::{dropdown} Starting up the Llama Stack server
The Llama Stack server can be configured flexibly so you can mix-and-match various providers for its individual API components -- beyond Inference, these include Vector IO, Agents, Telemetry, Evals, Post Training, etc.
To get started quickly, we provide various container images for the server component that work with different inference providers out of the box. For this guide, we will use `llamastack/distribution-ollama` as the container image.
To get started quickly, we provide various container images for the server component that work with different inference providers out of the box. For this guide, we will use `llamastack/distribution-ollama` as the container image. If you'd like to build your own image or customize the configurations, please check out [this guide](../references/index.md).
Lets setup some environment variables that we will use in the rest of the guide.
```bash
@ -184,7 +184,6 @@ from termcolor import cprint
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types import Document
@ -241,13 +240,14 @@ client.tool_runtime.rag_tool.insert(
chunk_size_in_tokens=512,
)
agent_config = AgentConfig(
rag_agent = Agent(
client,
model=os.environ["INFERENCE_MODEL"],
# Define instructions for the agent ( aka system prompt)
instructions="You are a helpful assistant",
enable_session_persistence=False,
# Define tools available to the agent
toolgroups=[
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
@ -256,12 +256,10 @@ agent_config = AgentConfig(
}
],
)
rag_agent = Agent(client, agent_config)
session_id = rag_agent.create_session("test-session")
user_prompts = [
"What are the top 5 topics that were explained? Only list succinct bullet points.",
"How to optimize memory usage in torchtune? use the knowledge_search tool to get information.",
]
# Run the agent loop by calling the `create_turn` method

View file

@ -1,7 +1,7 @@
```{admonition} News
:class: tip
Llama Stack {{ llama_stack_version }} is now available! See the [release notes](https://github.com/meta-llama/llama-stack/releases/tag/v{{ llama_stack_version }}) for more details.
Llama Stack {{ llama_stack_version }} is now available! See the {{ llama_stack_version_link }} for more details.
```
# Llama Stack
@ -68,6 +68,7 @@ A number of "adapters" are available for some popular Inference and Vector Store
| FAISS | Single Node |
| SQLite-Vec| Single Node |
| Chroma | Hosted and Single Node |
| Milvus | Hosted and Single Node |
| Postgres (PGVector) | Hosted and Single Node |
| Weaviate | Hosted |

View file

@ -2,7 +2,7 @@
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, FAISS, PGVector, etc.),
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
Providers come in two flavors:
@ -36,7 +36,7 @@ Evaluates the outputs of the system.
Collects telemetry data from the system.
## Tool Runtime
Is associated with the ToolGroup resouces.
Is associated with the ToolGroup resouces.
## Vector IO
@ -55,5 +55,6 @@ vector_io/sqlite-vec
vector_io/chromadb
vector_io/pgvector
vector_io/qdrant
vector_io/milvus
vector_io/weaviate
```

View file

@ -1,10 +1,10 @@
---
orphan: true
---
# Chroma
# Chroma
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features

View file

@ -3,7 +3,7 @@ orphan: true
---
# Faiss
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.
@ -29,5 +29,5 @@ You can install Faiss using pip:
pip install faiss-cpu
```
## Documentation
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
more details about Faiss in general.

View file

@ -0,0 +1,31 @@
---
orphan: true
---
# Milvus
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
allows you to store and query vectors directly within a Milvus database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features
- Easy to use
- Fully integrated with Llama Stack
## Usage
To use Milvus in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Milvus.
3. Start storing and querying vectors.
## Installation
You can install Milvus using pymilvus:
```bash
pip install pymilvus
```
## Documentation
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.

View file

@ -3,7 +3,7 @@ orphan: true
---
# Postgres PGVector
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.

View file

@ -3,7 +3,7 @@ orphan: true
---
# Qdrant
[Qdrant](https://qdrant.tech/documentation/) is a remote vector database provider for Llama Stack. It
[Qdrant](https://qdrant.tech/documentation/) is a remote vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.

View file

@ -3,8 +3,8 @@ orphan: true
---
# SQLite-Vec
[SQLite-Vec](https://github.com/asg017/sqlite-vec) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly within an SQLite database.
[SQLite-Vec](https://github.com/asg017/sqlite-vec) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly within an SQLite database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features

View file

@ -1,10 +1,10 @@
---
orphan: true
---
# Weaviate
# Weaviate
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
It allows you to store and query vectors directly within a Weaviate database.
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
It allows you to store and query vectors directly within a Weaviate database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features
@ -27,7 +27,7 @@ To use Weaviate in your Llama Stack project, follow these steps:
## Installation
To install Weaviate see the [Weaviate quickstart documentation](https://weaviate.io/developers/weaviate/quickstart).
To install Weaviate see the [Weaviate quickstart documentation](https://weaviate.io/developers/weaviate/quickstart).
## Documentation
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.

View file

@ -24,19 +24,9 @@ The Evaluation APIs are associated with a set of Resources as shown in the follo
- Associated with `Benchmark` resource.
Use the following decision tree to decide how to use LlamaStack Evaluation flow.
![Eval Flow](./resources/eval-flow.png)
```{admonition} Note on Benchmark v.s. Application Evaluation
:class: tip
- **Benchmark Evaluation** is a well-defined eval-task consisting of `dataset` and `scoring_function`. The generation (inference or agent) will be done as part of evaluation.
- **Application Evaluation** assumes users already have app inputs & generated outputs. Evaluation will purely focus on scoring the generated outputs via scoring functions (e.g. LLM-as-judge).
```
## Evaluation Examples Walkthrough
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/10CHyykee9j2OigaIcRv47BKG9mrNm0tJ?usp=sharing)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb)
It is best to open this notebook in Colab to follow along with the examples.
@ -63,20 +53,29 @@ eval_rows = ds.to_pandas().to_dict(orient="records")
- Run evaluate on the dataset
```python
from rich.pretty import pprint
from tqdm import tqdm
SYSTEM_PROMPT_TEMPLATE = """
You are an expert in Agriculture whose job is to answer questions from the user using images.
You are an expert in {subject} whose job is to answer questions from the user using images.
First, reason about the correct answer.
Then write the answer in the following format where X is exactly one of A,B,C,D:
Answer: X
Make sure X is one of A,B,C,D.
If you are uncertain of the correct answer, guess the most likely one.
"""
system_message = {
"role": "system",
"content": SYSTEM_PROMPT_TEMPLATE,
"content": SYSTEM_PROMPT_TEMPLATE.format(subject=subset),
}
# register the evaluation benchmark task with the dataset and scoring function
client.benchmarks.register(
benchmark_id="meta-reference::mmmu",
dataset_id=f"mmmu-{subset}-{split}",
@ -87,14 +86,15 @@ response = client.eval.evaluate_rows(
benchmark_id="meta-reference::mmmu",
input_rows=eval_rows,
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
task_config={
"type": "benchmark",
benchmark_config={
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
"type": "top_p",
"temperature": 1.0,
"top_p": 0.95,
},
"max_tokens": 4096,
"repeat_penalty": 1.0,
@ -103,6 +103,7 @@ response = client.eval.evaluate_rows(
},
},
)
pprint(response)
```
#### 1.2. Running SimpleQA
@ -115,10 +116,9 @@ simpleqa_dataset_id = "huggingface::simpleqa"
_ = client.datasets.register(
dataset_id=simpleqa_dataset_id,
provider_id="huggingface",
url={"uri": "https://huggingface.co/datasets/llamastack/evals"},
url={"uri": "https://huggingface.co/datasets/llamastack/simpleqa"},
metadata={
"path": "llamastack/evals",
"name": "evals__simpleqa",
"path": "llamastack/simpleqa",
"split": "train",
},
dataset_schema={
@ -145,8 +145,7 @@ response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
benchmark_config={
"eval_candidate": {
"type": "model",
"model": "meta-llama/Llama-3.2-90B-Vision-Instruct",
@ -160,6 +159,7 @@ response = client.eval.evaluate_rows(
},
},
)
pprint(response)
```
@ -170,19 +170,17 @@ response = client.eval.evaluate_rows(
```python
agent_config = {
"model": "meta-llama/Llama-3.1-405B-Instruct",
"instructions": "You are a helpful assistant",
"model": "meta-llama/Llama-3.3-70B-Instruct",
"instructions": "You are a helpful assistant that have access to tool to search the web. ",
"sampling_params": {
"strategy": {
"type": "greedy",
},
},
"tools": [
{
"type": "brave_search",
"engine": "tavily",
"api_key": userdata.get("TAVILY_SEARCH_API_KEY"),
"type": "top_p",
"temperature": 0.5,
"top_p": 0.9,
}
},
"toolgroups": [
"builtin::websearch",
],
"tool_choice": "auto",
"tool_prompt_format": "json",
@ -195,25 +193,22 @@ response = client.eval.evaluate_rows(
benchmark_id="meta-reference::simpleqa",
input_rows=eval_rows.rows,
scoring_functions=["llm-as-judge::405b-simpleqa"],
task_config={
"type": "benchmark",
benchmark_config={
"eval_candidate": {
"type": "agent",
"config": agent_config,
},
},
)
pprint(response)
```
### 3. Agentic Application Dataset Scoring
- Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)
- In this example, we will work with an example RAG dataset and couple of scoring functions for evaluation.
- `llm-as-judge::base`: LLM-As-Judge with custom judge prompt & model.
- `braintrust::factuality`: Factuality scorer from [braintrust](https://github.com/braintrustdata/autoevals).
- `basic::subset_of`: Basic checking if generated answer is a subset of expected answer.
Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.
- Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings.
In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings.
```python
judge_model_id = "meta-llama/Llama-3.1-405B-Instruct-FP8"
@ -317,28 +312,9 @@ The `BenchmarkConfig` are user specified config to define:
2. Optionally scoring function params to allow customization of scoring function behaviour. This is useful to parameterize generic scoring functions such as LLMAsJudge with custom `judge_model` / `judge_prompt`.
**Example Benchmark BenchmarkConfig**
**Example BenchmarkConfig**
```json
{
"type": "benchmark",
"eval_candidate": {
"type": "model",
"model": "Llama3.2-3B-Instruct",
"sampling_params": {
"strategy": {
"type": "greedy",
},
"max_tokens": 0,
"repetition_penalty": 1.0
}
}
}
```
**Example Application BenchmarkConfig**
```json
{
"type": "app",
"eval_candidate": {
"type": "model",
"model": "Llama3.1-405B-Instruct",

View file

@ -129,3 +129,35 @@ llama download --source huggingface --model-id Prompt-Guard-86M --ignore-pattern
**Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens).
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
## List the downloaded models
To list the downloaded models with the following command:
```
llama model list --downloaded
```
You should see a table like this:
```
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
```

View file

@ -154,6 +154,38 @@ llama download --source huggingface --model-id Prompt-Guard-86M --ignore-pattern
> **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored.
## List the downloaded models
To list the downloaded models with the following command:
```
llama model list --downloaded
```
You should see a table like this:
```
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Model ┃ Size ┃ Modified Time ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ Llama3.2-1B-Instruct:int4-qlora-eo8 │ 1.53 GB │ 2025-02-26 11:22:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B │ 2.31 GB │ 2025-02-18 21:48:52 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Prompt-Guard-86M │ 0.02 GB │ 2025-02-26 11:29:28 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B-Instruct:int4-spinquant-eo8 │ 3.69 GB │ 2025-02-26 11:37:41 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-3B │ 5.99 GB │ 2025-02-18 21:51:26 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.1-8B │ 14.97 GB │ 2025-02-16 10:36:37 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama3.2-1B-Instruct:int4-spinquant-eo8 │ 1.51 GB │ 2025-02-26 11:35:02 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B │ 2.80 GB │ 2025-02-26 11:20:46 │
├─────────────────────────────────────────┼──────────┼─────────────────────┤
│ Llama-Guard-3-1B:int4 │ 0.43 GB │ 2025-02-26 11:33:33 │
└─────────────────────────────────────────┴──────────┴─────────────────────┘
```
## Understand the models
The `llama model` command helps you explore the models interface.