feat: Introduce weighted and rrf reranker implementations

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
This commit is contained in:
Varsha Prasad Narsing 2025-06-04 15:59:44 -07:00
parent eab85a7121
commit 6ea5c10d48
14 changed files with 637 additions and 75 deletions

View file

@ -137,6 +137,8 @@ class FaissIndex(EmbeddingIndex):
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS")

View file

@ -27,7 +27,12 @@ from llama_stack.apis.vector_io import (
)
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
RERANKER_TYPE_WEIGHTED,
EmbeddingIndex,
VectorDBWithIndex,
)
logger = logging.getLogger(__name__)
@ -52,6 +57,59 @@ def _create_sqlite_connection(db_path):
return connection
def _normalize_scores(scores: dict[str, float]) -> dict[str, float]:
"""Normalize scores to [0,1] range using min-max normalization."""
if not scores:
return {}
min_score = min(scores.values())
max_score = max(scores.values())
score_range = max_score - min_score
if score_range > 0:
return {doc_id: (score - min_score) / score_range for doc_id, score in scores.items()}
return {doc_id: 1.0 for doc_id in scores}
def _weighted_rerank(
vector_scores: dict[str, float],
keyword_scores: dict[str, float],
alpha: float = 0.5,
) -> dict[str, float]:
"""ReRanker that uses weighted average of scores."""
all_ids = set(vector_scores.keys()) | set(keyword_scores.keys())
normalized_vector_scores = _normalize_scores(vector_scores)
normalized_keyword_scores = _normalize_scores(keyword_scores)
return {
doc_id: (alpha * normalized_keyword_scores.get(doc_id, 0.0))
+ ((1 - alpha) * normalized_vector_scores.get(doc_id, 0.0))
for doc_id in all_ids
}
def _rrf_rerank(
vector_scores: dict[str, float],
keyword_scores: dict[str, float],
impact_factor: float = 60.0,
) -> dict[str, float]:
"""ReRanker that uses Reciprocal Rank Fusion."""
# Convert scores to ranks
vector_ranks = {
doc_id: i + 1 for i, (doc_id, _) in enumerate(sorted(vector_scores.items(), key=lambda x: x[1], reverse=True))
}
keyword_ranks = {
doc_id: i + 1 for i, (doc_id, _) in enumerate(sorted(keyword_scores.items(), key=lambda x: x[1], reverse=True))
}
all_ids = set(vector_scores.keys()) | set(keyword_scores.keys())
rrf_scores = {}
for doc_id in all_ids:
vector_rank = vector_ranks.get(doc_id, float("inf"))
keyword_rank = keyword_ranks.get(doc_id, float("inf"))
# RRF formula: score = 1/(k + r) where k is impact_factor and r is the rank
rrf_scores[doc_id] = (1.0 / (impact_factor + vector_rank)) + (1.0 / (impact_factor + keyword_rank))
return rrf_scores
class SQLiteVecIndex(EmbeddingIndex):
"""
An index implementation that stores embeddings in a SQLite virtual table using sqlite-vec.
@ -299,60 +357,72 @@ class SQLiteVecIndex(EmbeddingIndex):
query_string: str,
k: int,
score_threshold: float,
reranker_type: str = RERANKER_TYPE_RRF,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
"""
Hybrid search using Reciprocal Rank Fusion (RRF) to combine vector and keyword search results.
RRF assigns scores based on the reciprocal of the rank position in each search method,
then combines these scores to get a final ranking.
Hybrid search using a configurable re-ranking strategy.
Args:
embedding: The query embedding vector
query_string: The text query for keyword search
k: Number of results to return
score_threshold: Minimum similarity score threshold
reranker_type: Type of reranker to use ("rrf" or "weighted")
reranker_params: Parameters for the reranker
Returns:
QueryChunksResponse with combined results
"""
if reranker_params is None:
reranker_params = {}
# Get results from both search methods
vector_response = await self.query_vector(embedding, k * 2, score_threshold)
keyword_response = await self.query_keyword(query_string, k * 2, score_threshold)
vector_response = await self.query_vector(embedding, k, score_threshold)
keyword_response = await self.query_keyword(query_string, k, score_threshold)
# Create dictionaries to store ranks for each method
vector_ranks = {chunk.metadata["document_id"]: i + 1 for i, chunk in enumerate(vector_response.chunks)}
keyword_ranks = {chunk.metadata["document_id"]: i + 1 for i, chunk in enumerate(keyword_response.chunks)}
# Convert responses to score dictionaries using generate_chunk_id
vector_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
}
keyword_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
}
# Calculate RRF scores for all unique document IDs
all_ids = set(vector_ranks.keys()) | set(keyword_ranks.keys())
rrf_scores = {}
for doc_id in all_ids:
vector_rank = vector_ranks.get(doc_id, float("inf"))
keyword_rank = keyword_ranks.get(doc_id, float("inf"))
# RRF formula: score = 1/(k + r) where k is a constant and r is the rank
rrf_scores[doc_id] = (1.0 / (60 + vector_rank)) + (1.0 / (60 + keyword_rank))
# Combine scores using the specified reranker
if reranker_type == RERANKER_TYPE_WEIGHTED:
alpha = reranker_params.get("alpha", 0.5)
combined_scores = _weighted_rerank(vector_scores, keyword_scores, alpha)
else:
# Default to RRF for None, RRF, or any unknown types
impact_factor = reranker_params.get("impact_factor", 60.0)
combined_scores = _rrf_rerank(vector_scores, keyword_scores, impact_factor)
# Sort by RRF score and get top k results
sorted_ids = sorted(rrf_scores.keys(), key=lambda x: rrf_scores[x], reverse=True)[:k]
# Sort by combined score and get top k results
sorted_items = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
top_k_items = sorted_items[:k]
# Combine results maintaining RRF scores
# Filter by score threshold
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
# Create a map of chunk_id to chunk for both responses
chunk_map = {}
for c in vector_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
for c in keyword_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
# Use the map to look up chunks by their IDs
chunks = []
scores = []
for doc_id in sorted_ids:
score = rrf_scores[doc_id]
if score >= score_threshold:
# Try to get from vector results first
for chunk in vector_response.chunks:
if chunk.metadata["document_id"] == doc_id:
chunks.append(chunk)
scores.append(score)
break
else:
# If not in vector results, get from keyword results
for chunk in keyword_response.chunks:
if chunk.metadata["document_id"] == doc_id:
chunks.append(chunk)
scores.append(score)
break
for doc_id, score in filtered_items:
if doc_id in chunk_map:
chunks.append(chunk_map[doc_id])
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)