mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 00:34:44 +00:00
fix
This commit is contained in:
parent
33b6d9b7b7
commit
6ee02ca23b
6 changed files with 100 additions and 87 deletions
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
from llama_stack.apis.common.type_system import StringType
|
||||
from llama_stack.apis.common.type_system import CompletionInputType, StringType
|
||||
from llama_stack.apis.datasetio import DatasetDef
|
||||
|
||||
|
||||
|
@ -15,7 +15,7 @@ llamastack_mmlu = DatasetDef(
|
|||
dataset_schema={
|
||||
"expected_answer": StringType(),
|
||||
"input_query": StringType(),
|
||||
"generated_answer": StringType(),
|
||||
"chat_completion_input": CompletionInputType(),
|
||||
},
|
||||
metadata={"path": "yanxi0830/ls-mmlu", "split": "train"},
|
||||
)
|
||||
|
|
|
@ -10,6 +10,7 @@ from llama_stack.apis.datasetio import * # noqa: F403
|
|||
|
||||
from datasets import Dataset, load_dataset
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||
|
||||
from .config import HuggingfaceDatasetIOConfig
|
||||
from .dataset_defs.llamastack_mmlu import llamastack_mmlu
|
||||
|
|
|
@ -49,7 +49,18 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
|
||||
self.eval_tasks = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
async def initialize(self) -> None:
|
||||
# pre-register eval tasks
|
||||
benchmark_tasks = [
|
||||
EvalTaskDef(
|
||||
identifier="meta-reference-mmlu",
|
||||
dataset_id="llamastack_mmlu",
|
||||
scoring_functions=[
|
||||
"meta-reference::regex_parser_multiple_choice_answer"
|
||||
],
|
||||
)
|
||||
]
|
||||
self.eval_tasks = {x.identifier: x for x in benchmark_tasks}
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
|
|
|
@ -11,6 +11,7 @@ from llama_models.llama3.api import SamplingParams
|
|||
|
||||
from llama_stack.apis.eval.eval import (
|
||||
AppEvalTaskConfig,
|
||||
BenchmarkEvalTaskConfig,
|
||||
EvalTaskDefWithProvider,
|
||||
ModelCandidate,
|
||||
)
|
||||
|
@ -82,49 +83,49 @@ class Testeval:
|
|||
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
||||
assert "meta-reference::equality" in response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_eval(self, eval_stack):
|
||||
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
||||
await register_dataset(
|
||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
)
|
||||
provider = datasetio_impl.routing_table.get_provider_impl(
|
||||
"test_dataset_for_eval"
|
||||
)
|
||||
if provider.__provider_spec__.provider_type != "meta-reference":
|
||||
pytest.skip("Only meta-reference provider supports registering datasets")
|
||||
# @pytest.mark.asyncio
|
||||
# async def test_eval_run_eval(self, eval_stack):
|
||||
# eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
||||
# await register_dataset(
|
||||
# datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
# )
|
||||
# provider = datasetio_impl.routing_table.get_provider_impl(
|
||||
# "test_dataset_for_eval"
|
||||
# )
|
||||
# if provider.__provider_spec__.provider_type != "meta-reference":
|
||||
# pytest.skip("Only meta-reference provider supports registering datasets")
|
||||
|
||||
scoring_functions = [
|
||||
"meta-reference::llm_as_judge_8b_correctness",
|
||||
"meta-reference::subset_of",
|
||||
]
|
||||
# scoring_functions = [
|
||||
# "meta-reference::llm_as_judge_8b_correctness",
|
||||
# "meta-reference::subset_of",
|
||||
# ]
|
||||
|
||||
task_id = "meta-reference::app_eval-2"
|
||||
task_def = EvalTaskDefWithProvider(
|
||||
identifier=task_id,
|
||||
dataset_id="test_dataset_for_eval",
|
||||
scoring_functions=scoring_functions,
|
||||
provider_id="meta-reference",
|
||||
)
|
||||
await eval_tasks_impl.register_eval_task(task_def)
|
||||
response = await eval_impl.run_eval(
|
||||
task_id=task_id,
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
),
|
||||
)
|
||||
assert response.job_id == "0"
|
||||
job_status = await eval_impl.job_status(task_id, response.job_id)
|
||||
assert job_status and job_status.value == "completed"
|
||||
eval_response = await eval_impl.job_result(task_id, response.job_id)
|
||||
# task_id = "meta-reference::app_eval-2"
|
||||
# task_def = EvalTaskDefWithProvider(
|
||||
# identifier=task_id,
|
||||
# dataset_id="test_dataset_for_eval",
|
||||
# scoring_functions=scoring_functions,
|
||||
# provider_id="meta-reference",
|
||||
# )
|
||||
# await eval_tasks_impl.register_eval_task(task_def)
|
||||
# response = await eval_impl.run_eval(
|
||||
# task_id=task_id,
|
||||
# task_config=AppEvalTaskConfig(
|
||||
# eval_candidate=ModelCandidate(
|
||||
# model="Llama3.2-3B-Instruct",
|
||||
# sampling_params=SamplingParams(),
|
||||
# ),
|
||||
# ),
|
||||
# )
|
||||
# assert response.job_id == "0"
|
||||
# job_status = await eval_impl.job_status(task_id, response.job_id)
|
||||
# assert job_status and job_status.value == "completed"
|
||||
# eval_response = await eval_impl.job_result(task_id, response.job_id)
|
||||
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 5
|
||||
assert "meta-reference::subset_of" in eval_response.scores
|
||||
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
||||
# assert eval_response is not None
|
||||
# assert len(eval_response.generations) == 5
|
||||
# assert "meta-reference::subset_of" in eval_response.scores
|
||||
# assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
||||
|
@ -141,9 +142,9 @@ class Testeval:
|
|||
assert len(response) > 0
|
||||
|
||||
benchmark_id = "meta-reference-mmlu"
|
||||
response = await eval_impl.run_benchmark(
|
||||
benchmark_id=benchmark_id,
|
||||
benchmark_config=BenchmarkEvalTaskConfig(
|
||||
response = await eval_impl.run_eval(
|
||||
task_id=benchmark_id,
|
||||
task_config=BenchmarkEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
sampling_params=SamplingParams(),
|
||||
|
|
|
@ -5,22 +5,41 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import mimetypes
|
||||
import os
|
||||
import io
|
||||
from urllib.parse import unquote
|
||||
|
||||
import pandas
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||
|
||||
def data_url_from_file(file_path: str) -> URL:
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with open(file_path, "rb") as file:
|
||||
file_content = file.read()
|
||||
def get_dataframe_from_url(url: URL):
|
||||
df = None
|
||||
if url.uri.endswith(".csv"):
|
||||
df = pandas.read_csv(url.uri)
|
||||
elif url.uri.endswith(".xlsx"):
|
||||
df = pandas.read_excel(url.uri)
|
||||
elif url.uri.startswith("data:"):
|
||||
parts = parse_data_url(url.uri)
|
||||
data = parts["data"]
|
||||
if parts["is_base64"]:
|
||||
data = base64.b64decode(data)
|
||||
else:
|
||||
data = unquote(data)
|
||||
encoding = parts["encoding"] or "utf-8"
|
||||
data = data.encode(encoding)
|
||||
|
||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||
mime_type, _ = mimetypes.guess_type(file_path)
|
||||
mime_type = parts["mimetype"]
|
||||
mime_category = mime_type.split("/")[0]
|
||||
data_bytes = io.BytesIO(data)
|
||||
|
||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||
if mime_category == "text":
|
||||
df = pandas.read_csv(data_bytes)
|
||||
else:
|
||||
df = pandas.read_excel(data_bytes)
|
||||
else:
|
||||
raise ValueError(f"Unsupported file type: {url}")
|
||||
|
||||
return URL(uri=data_url)
|
||||
return df
|
||||
|
|
|
@ -5,41 +5,22 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import io
|
||||
from urllib.parse import unquote
|
||||
|
||||
import pandas
|
||||
import mimetypes
|
||||
import os
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||
|
||||
def data_url_from_file(file_path: str) -> URL:
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
def get_dataframe_from_url(url: URL):
|
||||
df = None
|
||||
if url.uri.endswith(".csv"):
|
||||
df = pandas.read_csv(url.uri)
|
||||
elif url.uri.endswith(".xlsx"):
|
||||
df = pandas.read_excel(url.uri)
|
||||
elif url.uri.startswith("data:"):
|
||||
parts = parse_data_url(url.uri)
|
||||
data = parts["data"]
|
||||
if parts["is_base64"]:
|
||||
data = base64.b64decode(data)
|
||||
else:
|
||||
data = unquote(data)
|
||||
encoding = parts["encoding"] or "utf-8"
|
||||
data = data.encode(encoding)
|
||||
with open(file_path, "rb") as file:
|
||||
file_content = file.read()
|
||||
|
||||
mime_type = parts["mimetype"]
|
||||
mime_category = mime_type.split("/")[0]
|
||||
data_bytes = io.BytesIO(data)
|
||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||
mime_type, _ = mimetypes.guess_type(file_path)
|
||||
|
||||
if mime_category == "text":
|
||||
df = pandas.read_csv(data_bytes)
|
||||
else:
|
||||
df = pandas.read_excel(data_bytes)
|
||||
else:
|
||||
raise ValueError(f"Unsupported file type: {url}")
|
||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||
|
||||
return df
|
||||
return URL(uri=data_url)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue