mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 16:54:42 +00:00
fix
This commit is contained in:
parent
33b6d9b7b7
commit
6ee02ca23b
6 changed files with 100 additions and 87 deletions
|
@ -5,7 +5,7 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import URL
|
from llama_models.llama3.api.datatypes import URL
|
||||||
from llama_stack.apis.common.type_system import StringType
|
from llama_stack.apis.common.type_system import CompletionInputType, StringType
|
||||||
from llama_stack.apis.datasetio import DatasetDef
|
from llama_stack.apis.datasetio import DatasetDef
|
||||||
|
|
||||||
|
|
||||||
|
@ -15,7 +15,7 @@ llamastack_mmlu = DatasetDef(
|
||||||
dataset_schema={
|
dataset_schema={
|
||||||
"expected_answer": StringType(),
|
"expected_answer": StringType(),
|
||||||
"input_query": StringType(),
|
"input_query": StringType(),
|
||||||
"generated_answer": StringType(),
|
"chat_completion_input": CompletionInputType(),
|
||||||
},
|
},
|
||||||
metadata={"path": "yanxi0830/ls-mmlu", "split": "train"},
|
metadata={"path": "yanxi0830/ls-mmlu", "split": "train"},
|
||||||
)
|
)
|
||||||
|
|
|
@ -10,6 +10,7 @@ from llama_stack.apis.datasetio import * # noqa: F403
|
||||||
|
|
||||||
from datasets import Dataset, load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||||
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||||
|
|
||||||
from .config import HuggingfaceDatasetIOConfig
|
from .config import HuggingfaceDatasetIOConfig
|
||||||
from .dataset_defs.llamastack_mmlu import llamastack_mmlu
|
from .dataset_defs.llamastack_mmlu import llamastack_mmlu
|
||||||
|
|
|
@ -49,7 +49,18 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||||
|
|
||||||
self.eval_tasks = {}
|
self.eval_tasks = {}
|
||||||
|
|
||||||
async def initialize(self) -> None: ...
|
async def initialize(self) -> None:
|
||||||
|
# pre-register eval tasks
|
||||||
|
benchmark_tasks = [
|
||||||
|
EvalTaskDef(
|
||||||
|
identifier="meta-reference-mmlu",
|
||||||
|
dataset_id="llamastack_mmlu",
|
||||||
|
scoring_functions=[
|
||||||
|
"meta-reference::regex_parser_multiple_choice_answer"
|
||||||
|
],
|
||||||
|
)
|
||||||
|
]
|
||||||
|
self.eval_tasks = {x.identifier: x for x in benchmark_tasks}
|
||||||
|
|
||||||
async def shutdown(self) -> None: ...
|
async def shutdown(self) -> None: ...
|
||||||
|
|
||||||
|
|
|
@ -11,6 +11,7 @@ from llama_models.llama3.api import SamplingParams
|
||||||
|
|
||||||
from llama_stack.apis.eval.eval import (
|
from llama_stack.apis.eval.eval import (
|
||||||
AppEvalTaskConfig,
|
AppEvalTaskConfig,
|
||||||
|
BenchmarkEvalTaskConfig,
|
||||||
EvalTaskDefWithProvider,
|
EvalTaskDefWithProvider,
|
||||||
ModelCandidate,
|
ModelCandidate,
|
||||||
)
|
)
|
||||||
|
@ -82,49 +83,49 @@ class Testeval:
|
||||||
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
|
||||||
assert "meta-reference::equality" in response.scores
|
assert "meta-reference::equality" in response.scores
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
# @pytest.mark.asyncio
|
||||||
async def test_eval_run_eval(self, eval_stack):
|
# async def test_eval_run_eval(self, eval_stack):
|
||||||
eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
# eval_impl, eval_tasks_impl, _, _, datasetio_impl, datasets_impl = eval_stack
|
||||||
await register_dataset(
|
# await register_dataset(
|
||||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
# datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||||
)
|
# )
|
||||||
provider = datasetio_impl.routing_table.get_provider_impl(
|
# provider = datasetio_impl.routing_table.get_provider_impl(
|
||||||
"test_dataset_for_eval"
|
# "test_dataset_for_eval"
|
||||||
)
|
# )
|
||||||
if provider.__provider_spec__.provider_type != "meta-reference":
|
# if provider.__provider_spec__.provider_type != "meta-reference":
|
||||||
pytest.skip("Only meta-reference provider supports registering datasets")
|
# pytest.skip("Only meta-reference provider supports registering datasets")
|
||||||
|
|
||||||
scoring_functions = [
|
# scoring_functions = [
|
||||||
"meta-reference::llm_as_judge_8b_correctness",
|
# "meta-reference::llm_as_judge_8b_correctness",
|
||||||
"meta-reference::subset_of",
|
# "meta-reference::subset_of",
|
||||||
]
|
# ]
|
||||||
|
|
||||||
task_id = "meta-reference::app_eval-2"
|
# task_id = "meta-reference::app_eval-2"
|
||||||
task_def = EvalTaskDefWithProvider(
|
# task_def = EvalTaskDefWithProvider(
|
||||||
identifier=task_id,
|
# identifier=task_id,
|
||||||
dataset_id="test_dataset_for_eval",
|
# dataset_id="test_dataset_for_eval",
|
||||||
scoring_functions=scoring_functions,
|
# scoring_functions=scoring_functions,
|
||||||
provider_id="meta-reference",
|
# provider_id="meta-reference",
|
||||||
)
|
# )
|
||||||
await eval_tasks_impl.register_eval_task(task_def)
|
# await eval_tasks_impl.register_eval_task(task_def)
|
||||||
response = await eval_impl.run_eval(
|
# response = await eval_impl.run_eval(
|
||||||
task_id=task_id,
|
# task_id=task_id,
|
||||||
task_config=AppEvalTaskConfig(
|
# task_config=AppEvalTaskConfig(
|
||||||
eval_candidate=ModelCandidate(
|
# eval_candidate=ModelCandidate(
|
||||||
model="Llama3.2-3B-Instruct",
|
# model="Llama3.2-3B-Instruct",
|
||||||
sampling_params=SamplingParams(),
|
# sampling_params=SamplingParams(),
|
||||||
),
|
# ),
|
||||||
),
|
# ),
|
||||||
)
|
# )
|
||||||
assert response.job_id == "0"
|
# assert response.job_id == "0"
|
||||||
job_status = await eval_impl.job_status(task_id, response.job_id)
|
# job_status = await eval_impl.job_status(task_id, response.job_id)
|
||||||
assert job_status and job_status.value == "completed"
|
# assert job_status and job_status.value == "completed"
|
||||||
eval_response = await eval_impl.job_result(task_id, response.job_id)
|
# eval_response = await eval_impl.job_result(task_id, response.job_id)
|
||||||
|
|
||||||
assert eval_response is not None
|
# assert eval_response is not None
|
||||||
assert len(eval_response.generations) == 5
|
# assert len(eval_response.generations) == 5
|
||||||
assert "meta-reference::subset_of" in eval_response.scores
|
# assert "meta-reference::subset_of" in eval_response.scores
|
||||||
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
# assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
async def test_eval_run_benchmark_eval(self, eval_stack):
|
||||||
|
@ -141,9 +142,9 @@ class Testeval:
|
||||||
assert len(response) > 0
|
assert len(response) > 0
|
||||||
|
|
||||||
benchmark_id = "meta-reference-mmlu"
|
benchmark_id = "meta-reference-mmlu"
|
||||||
response = await eval_impl.run_benchmark(
|
response = await eval_impl.run_eval(
|
||||||
benchmark_id=benchmark_id,
|
task_id=benchmark_id,
|
||||||
benchmark_config=BenchmarkEvalTaskConfig(
|
task_config=BenchmarkEvalTaskConfig(
|
||||||
eval_candidate=ModelCandidate(
|
eval_candidate=ModelCandidate(
|
||||||
model="Llama3.2-3B-Instruct",
|
model="Llama3.2-3B-Instruct",
|
||||||
sampling_params=SamplingParams(),
|
sampling_params=SamplingParams(),
|
||||||
|
|
|
@ -5,22 +5,41 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import base64
|
import base64
|
||||||
import mimetypes
|
import io
|
||||||
import os
|
from urllib.parse import unquote
|
||||||
|
|
||||||
|
import pandas
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import URL
|
from llama_models.llama3.api.datatypes import URL
|
||||||
|
|
||||||
|
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||||
|
|
||||||
def data_url_from_file(file_path: str) -> URL:
|
|
||||||
if not os.path.exists(file_path):
|
|
||||||
raise FileNotFoundError(f"File not found: {file_path}")
|
|
||||||
|
|
||||||
with open(file_path, "rb") as file:
|
def get_dataframe_from_url(url: URL):
|
||||||
file_content = file.read()
|
df = None
|
||||||
|
if url.uri.endswith(".csv"):
|
||||||
|
df = pandas.read_csv(url.uri)
|
||||||
|
elif url.uri.endswith(".xlsx"):
|
||||||
|
df = pandas.read_excel(url.uri)
|
||||||
|
elif url.uri.startswith("data:"):
|
||||||
|
parts = parse_data_url(url.uri)
|
||||||
|
data = parts["data"]
|
||||||
|
if parts["is_base64"]:
|
||||||
|
data = base64.b64decode(data)
|
||||||
|
else:
|
||||||
|
data = unquote(data)
|
||||||
|
encoding = parts["encoding"] or "utf-8"
|
||||||
|
data = data.encode(encoding)
|
||||||
|
|
||||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
mime_type = parts["mimetype"]
|
||||||
mime_type, _ = mimetypes.guess_type(file_path)
|
mime_category = mime_type.split("/")[0]
|
||||||
|
data_bytes = io.BytesIO(data)
|
||||||
|
|
||||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
if mime_category == "text":
|
||||||
|
df = pandas.read_csv(data_bytes)
|
||||||
|
else:
|
||||||
|
df = pandas.read_excel(data_bytes)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported file type: {url}")
|
||||||
|
|
||||||
return URL(uri=data_url)
|
return df
|
||||||
|
|
|
@ -5,41 +5,22 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
import base64
|
import base64
|
||||||
import io
|
import mimetypes
|
||||||
from urllib.parse import unquote
|
import os
|
||||||
|
|
||||||
import pandas
|
|
||||||
|
|
||||||
from llama_models.llama3.api.datatypes import URL
|
from llama_models.llama3.api.datatypes import URL
|
||||||
|
|
||||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
|
||||||
|
|
||||||
|
def data_url_from_file(file_path: str) -> URL:
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
def get_dataframe_from_url(url: URL):
|
with open(file_path, "rb") as file:
|
||||||
df = None
|
file_content = file.read()
|
||||||
if url.uri.endswith(".csv"):
|
|
||||||
df = pandas.read_csv(url.uri)
|
|
||||||
elif url.uri.endswith(".xlsx"):
|
|
||||||
df = pandas.read_excel(url.uri)
|
|
||||||
elif url.uri.startswith("data:"):
|
|
||||||
parts = parse_data_url(url.uri)
|
|
||||||
data = parts["data"]
|
|
||||||
if parts["is_base64"]:
|
|
||||||
data = base64.b64decode(data)
|
|
||||||
else:
|
|
||||||
data = unquote(data)
|
|
||||||
encoding = parts["encoding"] or "utf-8"
|
|
||||||
data = data.encode(encoding)
|
|
||||||
|
|
||||||
mime_type = parts["mimetype"]
|
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||||
mime_category = mime_type.split("/")[0]
|
mime_type, _ = mimetypes.guess_type(file_path)
|
||||||
data_bytes = io.BytesIO(data)
|
|
||||||
|
|
||||||
if mime_category == "text":
|
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||||
df = pandas.read_csv(data_bytes)
|
|
||||||
else:
|
|
||||||
df = pandas.read_excel(data_bytes)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported file type: {url}")
|
|
||||||
|
|
||||||
return df
|
return URL(uri=data_url)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue