mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
chore(lint): update Ruff ignores for project conventions and maintainability (#1184)
- Added new ignores from flake8-bugbear (`B007`, `B008`) - Ignored `C901` (high function complexity) for now, pending review - Maintained PyTorch conventions (`N812`, `N817`) - Allowed `E731` (lambda assignments) for flexibility - Consolidated existing ignores (`E402`, `E501`, `F405`, `C408`, `N812`) - Documented rationale for each ignored rule This keeps our linting aligned with project needs while tracking potential fixes. Signed-off-by: Sébastien Han <seb@redhat.com> Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
3b57d8ee88
commit
6fa257b475
33 changed files with 113 additions and 145 deletions
|
@ -39,12 +39,11 @@ class Testeval:
|
|||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, benchmarks_impl, datasetio_impl, datasets_impl, models_impl = (
|
||||
eval_impl, benchmarks_impl, datasetio_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasetio],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
|
||||
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
|
@ -92,11 +91,10 @@ class Testeval:
|
|||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, benchmarks_impl, datasets_impl, models_impl = (
|
||||
eval_impl, benchmarks_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
|
||||
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
|
||||
|
@ -131,11 +129,10 @@ class Testeval:
|
|||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||
eval_impl, benchmarks_impl, datasets_impl, models_impl = (
|
||||
eval_impl, benchmarks_impl, datasets_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.benchmarks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue