Merge branch 'main' into add-watsonx-inference-adapter

This commit is contained in:
Sajikumar JS 2025-04-25 10:57:45 +05:30
commit 6fe8b292b1
74 changed files with 5033 additions and 1685 deletions

View file

@ -68,7 +68,8 @@ chunks_response = client.vector_io.query(
### Using the RAG Tool
A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc.
and automatically chunks them into smaller pieces.
and automatically chunks them into smaller pieces. More examples for how to format a RAGDocument can be found in the
[appendix](#more-ragdocument-examples).
```python
from llama_stack_client import RAGDocument
@ -178,3 +179,38 @@ for vector_db_id in client.vector_dbs.list():
print(f"Unregistering vector database: {vector_db_id.identifier}")
client.vector_dbs.unregister(vector_db_id=vector_db_id.identifier)
```
### Appendix
#### More RAGDocument Examples
```python
from llama_stack_client import RAGDocument
import base64
RAGDocument(document_id="num-0", content={"uri": "file://path/to/file"})
RAGDocument(document_id="num-1", content="plain text")
RAGDocument(
document_id="num-2",
content={
"type": "text",
"text": "plain text input",
}, # for inputs that should be treated as text explicitly
)
RAGDocument(
document_id="num-3",
content={
"type": "image",
"image": {"url": {"uri": "https://mywebsite.com/image.jpg"}},
},
)
B64_ENCODED_IMAGE = base64.b64encode(
requests.get(
"https://raw.githubusercontent.com/meta-llama/llama-stack/refs/heads/main/docs/_static/llama-stack.png"
).content
)
RAGDocuemnt(
document_id="num-4",
content={"type": "image", "image": {"data": B64_ENCODED_IMAGE}},
)
```
for more strongly typed interaction use the typed dicts found [here](https://github.com/meta-llama/llama-stack-client-python/blob/38cd91c9e396f2be0bec1ee96a19771582ba6f17/src/llama_stack_client/types/shared_params/document.py).

View file

@ -41,7 +41,7 @@ client.toolgroups.register(
The tool requires an API key which can be provided either in the configuration or through the request header `X-LlamaStack-Provider-Data`. The format of the header is `{"<provider_name>_api_key": <your api key>}`.
> **NOTE:** When using Tavily Search and Bing Search, the inference output will still display "Brave Search." This is because Llama models have been trained with Brave Search as a built-in tool. Tavily and bing is just being used in lieu of Brave search.
#### Code Interpreter
@ -214,3 +214,69 @@ response = agent.create_turn(
session_id=session_id,
)
```
## Simple Example 2: Using an Agent with the Web Search Tool
1. Start by registering a Tavily API key at [Tavily](https://tavily.com/).
2. [Optional] Provide the API key directly to the Llama Stack server
```bash
export TAVILY_SEARCH_API_KEY="your key"
```
```bash
--env TAVILY_SEARCH_API_KEY=${TAVILY_SEARCH_API_KEY}
```
3. Run the following script.
```python
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client import LlamaStackClient
client = LlamaStackClient(
base_url=f"http://localhost:8321",
provider_data={
"tavily_search_api_key": "your_TAVILY_SEARCH_API_KEY"
}, # Set this from the client side. No need to provide it if it has already been configured on the Llama Stack server.
)
agent = Agent(
client,
model="meta-llama/Llama-3.2-3B-Instruct",
instructions=(
"You are a web search assistant, must use websearch tool to look up the most current and precise information available. "
),
tools=["builtin::websearch"],
)
session_id = agent.create_session("websearch-session")
response = agent.create_turn(
messages=[
{"role": "user", "content": "How did the USA perform in the last Olympics?"}
],
session_id=session_id,
)
for log in EventLogger().log(response):
log.print()
```
## Simple Example3: Using an Agent with the WolframAlpha Tool
1. Start by registering for a WolframAlpha API key at [WolframAlpha Developer Portal](https://developer.wolframalpha.com/access).
2. Provide the API key either when starting the Llama Stack server:
```bash
--env WOLFRAM_ALPHA_API_KEY=${WOLFRAM_ALPHA_API_KEY}
```
or from the client side:
```python
client = LlamaStackClient(
base_url="http://localhost:8321",
provider_data={"wolfram_alpha_api_key": wolfram_api_key},
)
```
3. Configure the tools in the Agent by setting `tools=["builtin::wolfram_alpha"]`.
4. Example user query:
```python
response = agent.create_turn(
messages=[{"role": "user", "content": "Solve x^2 + 2x + 1 = 0 using WolframAlpha"}],
session_id=session_id,
)
```
```

View file

@ -176,7 +176,11 @@ distribution_spec:
safety: inline::llama-guard
agents: inline::meta-reference
telemetry: inline::meta-reference
image_name: ollama
image_type: conda
# If some providers are external, you can specify the path to the implementation
external_providers_dir: /etc/llama-stack/providers.d
```
```
@ -184,6 +188,57 @@ llama stack build --config llama_stack/templates/ollama/build.yaml
```
:::
:::{tab-item} Building with External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers.
To build a distribution with external providers, you need to:
1. Configure the `external_providers_dir` in your build configuration file:
```yaml
# Example my-external-stack.yaml with external providers
version: '2'
distribution_spec:
description: Custom distro for CI tests
providers:
inference:
- remote::custom_ollama
# Add more providers as needed
image_type: container
image_name: ci-test
# Path to external provider implementations
external_providers_dir: /etc/llama-stack/providers.d
```
Here's an example for a custom Ollama provider:
```yaml
adapter:
adapter_type: custom_ollama
pip_packages:
- ollama
- aiohttp
- llama-stack-provider-ollama # This is the provider package
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```
The `pip_packages` section lists the Python packages required by the provider, as well as the
provider package itself. The package must be available on PyPI or can be provided from a local
directory or a git repository (git must be installed on the build environment).
2. Build your distribution using the config file:
```
llama stack build --config my-external-stack.yaml
```
For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external.md).
:::
:::{tab-item} Building Container
```{admonition} Podman Alternative

View file

@ -7,7 +7,7 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `inline::localfs` |
| eval | `inline::meta-reference` |
| eval | `remote::nvidia` |
| inference | `remote::nvidia` |
| post_training | `remote::nvidia` |
| safety | `remote::nvidia` |
@ -22,13 +22,13 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
The following environment variables can be configured:
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
- `NVIDIA_APPEND_API_VERSION`: Whether to append the API version to the base_url (default: `True`)
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
- `NVIDIA_EVALUATOR_URL`: URL for the NeMo Evaluator Service (default: `http://0.0.0.0:7331`)
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
@ -58,7 +58,7 @@ The following models are available by default:
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
### Deploy NeMo Microservices Platform
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/set-up/deploy-as-platform/index.html) for platform prerequisites and instructions to install and deploy the platform.
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform.
## Supported Services
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
@ -118,7 +118,7 @@ curl --location "$NEMO_URL/v1/deployment/model-deployments" \
}
}'
```
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/get-started/tutorials/deploy-nims.html#) for more information on how to deploy a NIM and verify it's available for inference.
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference.
You can also remove a deployed NIM to free up GPU resources, if needed.
```sh
@ -171,7 +171,3 @@ llama stack run ./run.yaml \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
### Example Notebooks
You can reference the Jupyter notebooks in `docs/notebooks/nvidia/` for example usage of these APIs.
- [Llama_Stack_NVIDIA_E2E_Flow.ipynb](/docs/notebooks/nvidia/Llama_Stack_NVIDIA_E2E_Flow.ipynb) contains an end-to-end workflow for running inference, customizing, and evaluating models using your deployed NeMo Microservices platform.

View file

@ -44,7 +44,7 @@ The following environment variables can be configured:
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
that we only use GPUs here for demonstration purposes.
that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging.
### Setting up vLLM server on AMD GPU

View file

@ -50,9 +50,10 @@ Llama Stack supports two types of external providers:
Here's a list of known external providers that you can use with Llama Stack:
| Type | Name | Description | Repository |
|------|------|-------------|------------|
| Remote | KubeFlow Training | Train models with KubeFlow | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| Name | Description | API | Type | Repository |
|------|-------------|-----|------|------------|
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
### Remote Provider Specification