mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-30 05:39:33 +00:00
Merge branch 'main' into add-watsonx-inference-adapter
This commit is contained in:
commit
6fe8b292b1
74 changed files with 5033 additions and 1685 deletions
|
|
@ -394,12 +394,10 @@
|
|||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
|
|
@ -411,7 +409,6 @@
|
|||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
|
|
@ -419,7 +416,6 @@
|
|||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"ollama": [
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Use NVIDIA NIM for running LLM inference and safety
|
||||
description: Use NVIDIA NIM for running LLM inference, evaluation and safety
|
||||
providers:
|
||||
inference:
|
||||
- remote::nvidia
|
||||
|
|
@ -13,7 +13,7 @@ distribution_spec:
|
|||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
- remote::nvidia
|
||||
post_training:
|
||||
- remote::nvidia
|
||||
datasetio:
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ The following models are available by default:
|
|||
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
|
||||
|
||||
### Deploy NeMo Microservices Platform
|
||||
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/set-up/deploy-as-platform/index.html) for platform prerequisites and instructions to install and deploy the platform.
|
||||
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform.
|
||||
|
||||
## Supported Services
|
||||
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
|
||||
|
|
@ -91,7 +91,7 @@ curl --location "$NEMO_URL/v1/deployment/model-deployments" \
|
|||
}
|
||||
}'
|
||||
```
|
||||
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/documentation/latest/nemo-microservices/latest-early_access/get-started/tutorials/deploy-nims.html#) for more information on how to deploy a NIM and verify it's available for inference.
|
||||
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference.
|
||||
|
||||
You can also remove a deployed NIM to free up GPU resources, if needed.
|
||||
```sh
|
||||
|
|
@ -144,7 +144,3 @@ llama stack run ./run.yaml \
|
|||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
||||
### Example Notebooks
|
||||
You can reference the Jupyter notebooks in `docs/notebooks/nvidia/` for example usage of these APIs.
|
||||
- [Llama_Stack_NVIDIA_E2E_Flow.ipynb](/docs/notebooks/nvidia/Llama_Stack_NVIDIA_E2E_Flow.ipynb) contains an end-to-end workflow for running inference, customizing, and evaluating models using your deployed NeMo Microservices platform.
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
|
||||
from llama_stack.providers.remote.eval.nvidia import NVIDIAEvalConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
|
||||
|
|
@ -20,7 +21,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"safety": ["remote::nvidia"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"eval": ["remote::nvidia"],
|
||||
"post_training": ["remote::nvidia"],
|
||||
"datasetio": ["inline::localfs"],
|
||||
"scoring": ["inline::basic"],
|
||||
|
|
@ -37,6 +38,11 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="remote::nvidia",
|
||||
config=NVIDIASafetyConfig.sample_run_config(),
|
||||
)
|
||||
eval_provider = Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIAEvalConfig.sample_run_config(),
|
||||
)
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="nvidia",
|
||||
|
|
@ -60,7 +66,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
return DistributionTemplate(
|
||||
name="nvidia",
|
||||
distro_type="self_hosted",
|
||||
description="Use NVIDIA NIM for running LLM inference and safety",
|
||||
description="Use NVIDIA NIM for running LLM inference, evaluation and safety",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
|
|
@ -69,6 +75,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
"eval": [eval_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
|
|
@ -78,7 +85,8 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"inference": [
|
||||
inference_provider,
|
||||
safety_provider,
|
||||
]
|
||||
],
|
||||
"eval": [eval_provider],
|
||||
},
|
||||
default_models=[inference_model, safety_model],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
|
||||
|
|
@ -90,19 +98,15 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"",
|
||||
"NVIDIA API Key",
|
||||
),
|
||||
## Nemo Customizer related variables
|
||||
"NVIDIA_USER_ID": (
|
||||
"llama-stack-user",
|
||||
"NVIDIA User ID",
|
||||
"NVIDIA_APPEND_API_VERSION": (
|
||||
"True",
|
||||
"Whether to append the API version to the base_url",
|
||||
),
|
||||
## Nemo Customizer related variables
|
||||
"NVIDIA_DATASET_NAMESPACE": (
|
||||
"default",
|
||||
"NVIDIA Dataset Namespace",
|
||||
),
|
||||
"NVIDIA_ACCESS_POLICIES": (
|
||||
"{}",
|
||||
"NVIDIA Access Policies",
|
||||
),
|
||||
"NVIDIA_PROJECT_ID": (
|
||||
"test-project",
|
||||
"NVIDIA Project ID",
|
||||
|
|
@ -119,6 +123,10 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"http://0.0.0.0:7331",
|
||||
"URL for the NeMo Guardrails Service",
|
||||
),
|
||||
"NVIDIA_EVALUATOR_URL": (
|
||||
"http://0.0.0.0:7331",
|
||||
"URL for the NeMo Evaluator Service",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"Llama3.1-8B-Instruct",
|
||||
"Inference model",
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ providers:
|
|||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:True}
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
|
|
@ -53,13 +54,10 @@ providers:
|
|||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/nvidia/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/meta_reference_eval.db
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ providers:
|
|||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:}
|
||||
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:True}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
|
|
@ -48,13 +49,10 @@ providers:
|
|||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/nvidia/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/meta_reference_eval.db
|
||||
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:http://localhost:7331}
|
||||
post_training:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ The following environment variables can be configured:
|
|||
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
|
||||
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
|
||||
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
|
||||
that we only use GPUs here for demonstration purposes.
|
||||
that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging.
|
||||
|
||||
### Setting up vLLM server on AMD GPU
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue