diff --git a/llama_stack/core/routing_tables/vector_dbs.py b/llama_stack/core/routing_tables/vector_dbs.py index 497894064..932bbdba8 100644 --- a/llama_stack/core/routing_tables/vector_dbs.py +++ b/llama_stack/core/routing_tables/vector_dbs.py @@ -245,3 +245,65 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs): vector_store_id=vector_store_id, file_id=file_id, ) + + async def openai_create_vector_store_file_batch( + self, + vector_store_id: str, + file_ids: list[str], + attributes: dict[str, Any] | None = None, + chunking_strategy: Any | None = None, + ): + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_create_vector_store_file_batch( + vector_store_id=vector_store_id, + file_ids=file_ids, + attributes=attributes, + chunking_strategy=chunking_strategy, + ) + + async def openai_retrieve_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + ): + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_retrieve_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + ) + + async def openai_list_files_in_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + after: str | None = None, + before: str | None = None, + filter: str | None = None, + limit: int | None = 20, + order: str | None = "desc", + ): + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_list_files_in_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + after=after, + before=before, + filter=filter, + limit=limit, + order=order, + ) + + async def openai_cancel_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + ): + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_cancel_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + ) diff --git a/llama_stack/providers/inline/vector_io/faiss/faiss.py b/llama_stack/providers/inline/vector_io/faiss/faiss.py index 258c6e7aa..405c134e5 100644 --- a/llama_stack/providers/inline/vector_io/faiss/faiss.py +++ b/llama_stack/providers/inline/vector_io/faiss/faiss.py @@ -200,12 +200,10 @@ class FaissIndex(EmbeddingIndex): class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.files_api = files_api self.cache: dict[str, VectorDBWithIndex] = {} - self.kvstore: KVStore | None = None - self.openai_vector_stores: dict[str, dict[str, Any]] = {} async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.kvstore) diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py index f34f8f6fb..26231a9b7 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py @@ -410,12 +410,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc """ def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.files_api = files_api self.cache: dict[str, VectorDBWithIndex] = {} - self.openai_vector_stores: dict[str, dict[str, Any]] = {} - self.kvstore: KVStore | None = None async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.kvstore) diff --git a/llama_stack/providers/remote/vector_io/chroma/chroma.py b/llama_stack/providers/remote/vector_io/chroma/chroma.py index a9ec644ef..511123d6e 100644 --- a/llama_stack/providers/remote/vector_io/chroma/chroma.py +++ b/llama_stack/providers/remote/vector_io/chroma/chroma.py @@ -140,14 +140,13 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP inference_api: Api.inference, files_api: Files | None, ) -> None: + super().__init__(files_api=files_api, kvstore=None) log.info(f"Initializing ChromaVectorIOAdapter with url: {config}") self.config = config self.inference_api = inference_api self.client = None self.cache = {} - self.kvstore: KVStore | None = None self.vector_db_store = None - self.files_api = files_api async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.kvstore) diff --git a/llama_stack/providers/remote/vector_io/milvus/milvus.py b/llama_stack/providers/remote/vector_io/milvus/milvus.py index e07e8ff12..0acc90595 100644 --- a/llama_stack/providers/remote/vector_io/milvus/milvus.py +++ b/llama_stack/providers/remote/vector_io/milvus/milvus.py @@ -309,14 +309,12 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP inference_api: Inference, files_api: Files | None, ) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.cache = {} self.client = None self.inference_api = inference_api - self.files_api = files_api - self.kvstore: KVStore | None = None self.vector_db_store = None - self.openai_vector_stores: dict[str, dict[str, Any]] = {} self.metadata_collection_name = "openai_vector_stores_metadata" async def initialize(self) -> None: diff --git a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py index 1c140e782..dfdfef6eb 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py +++ b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py @@ -345,14 +345,12 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco inference_api: Api.inference, files_api: Files | None = None, ) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api self.conn = None self.cache = {} - self.files_api = files_api - self.kvstore: KVStore | None = None self.vector_db_store = None - self.openai_vector_stores: dict[str, dict[str, Any]] = {} self.metadata_collection_name = "openai_vector_stores_metadata" async def initialize(self) -> None: diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index ec3869495..6b386840c 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -27,7 +27,7 @@ from llama_stack.apis.vector_io import ( from llama_stack.log import get_logger from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig -from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl +from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin from llama_stack.providers.utils.memory.vector_store import ( ChunkForDeletion, @@ -162,14 +162,12 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP inference_api: Api.inference, files_api: Files | None = None, ) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.client: AsyncQdrantClient = None self.cache = {} self.inference_api = inference_api - self.files_api = files_api self.vector_db_store = None - self.kvstore: KVStore | None = None - self.openai_vector_stores: dict[str, dict[str, Any]] = {} self._qdrant_lock = asyncio.Lock() async def initialize(self) -> None: diff --git a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py index 02d132106..54ac6f8d3 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py +++ b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py @@ -284,14 +284,12 @@ class WeaviateVectorIOAdapter( inference_api: Api.inference, files_api: Files | None, ) -> None: + super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api self.client_cache = {} self.cache = {} - self.files_api = files_api - self.kvstore: KVStore | None = None self.vector_db_store = None - self.openai_vector_stores: dict[str, dict[str, Any]] = {} self.metadata_collection_name = "openai_vector_stores_metadata" def _get_client(self) -> weaviate.WeaviateClient: diff --git a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py index 36432767f..44d0e21ca 100644 --- a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py +++ b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py @@ -12,6 +12,8 @@ import uuid from abc import ABC, abstractmethod from typing import Any +from pydantic import TypeAdapter + from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files, OpenAIFileObject from llama_stack.apis.vector_dbs import VectorDB @@ -50,12 +52,16 @@ logger = get_logger(name=__name__, category="providers::utils") # Constants for OpenAI vector stores CHUNK_MULTIPLIER = 5 +FILE_BATCH_CLEANUP_INTERVAL_SECONDS = 24 * 60 * 60 # 1 day in seconds +MAX_CONCURRENT_FILES_PER_BATCH = 5 # Maximum concurrent file processing within a batch +FILE_BATCH_CHUNK_SIZE = 10 # Process files in chunks of this size (2x concurrency) VERSION = "v3" VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::" OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:{VERSION}::" +OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX = f"openai_vector_stores_file_batches:{VERSION}::" class OpenAIVectorStoreMixin(ABC): @@ -65,11 +71,15 @@ class OpenAIVectorStoreMixin(ABC): an openai_vector_stores in-memory cache. """ - # These should be provided by the implementing class - openai_vector_stores: dict[str, dict[str, Any]] - files_api: Files | None - # KV store for persisting OpenAI vector store metadata - kvstore: KVStore | None + # Implementing classes should call super().__init__() in their __init__ method + # to properly initialize the mixin attributes. + def __init__(self, files_api: Files | None = None, kvstore: KVStore | None = None): + self.openai_vector_stores: dict[str, dict[str, Any]] = {} + self.openai_file_batches: dict[str, dict[str, Any]] = {} + self.files_api = files_api + self.kvstore = kvstore + self._last_file_batch_cleanup_time = 0 + self._file_batch_tasks: dict[str, asyncio.Task[None]] = {} async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None: """Save vector store metadata to persistent storage.""" @@ -159,9 +169,74 @@ class OpenAIVectorStoreMixin(ABC): for idx in range(len(raw_items)): await self.kvstore.delete(f"{contents_prefix}{idx}") + async def _save_openai_vector_store_file_batch(self, batch_id: str, batch_info: dict[str, Any]) -> None: + """Save file batch metadata to persistent storage.""" + assert self.kvstore + key = f"{OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX}{batch_id}" + await self.kvstore.set(key=key, value=json.dumps(batch_info)) + # update in-memory cache + self.openai_file_batches[batch_id] = batch_info + + async def _load_openai_vector_store_file_batches(self) -> dict[str, dict[str, Any]]: + """Load all file batch metadata from persistent storage.""" + assert self.kvstore + start_key = OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX + end_key = f"{OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX}\xff" + stored_data = await self.kvstore.values_in_range(start_key, end_key) + + batches: dict[str, dict[str, Any]] = {} + for item in stored_data: + info = json.loads(item) + batches[info["id"]] = info + return batches + + async def _delete_openai_vector_store_file_batch(self, batch_id: str) -> None: + """Delete file batch metadata from persistent storage and in-memory cache.""" + assert self.kvstore + key = f"{OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX}{batch_id}" + await self.kvstore.delete(key) + # remove from in-memory cache + self.openai_file_batches.pop(batch_id, None) + + async def _cleanup_expired_file_batches(self) -> None: + """Clean up expired file batches from persistent storage.""" + assert self.kvstore + start_key = OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX + end_key = f"{OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX}\xff" + stored_data = await self.kvstore.values_in_range(start_key, end_key) + + current_time = int(time.time()) + expired_count = 0 + + for item in stored_data: + info = json.loads(item) + expires_at = info.get("expires_at") + if expires_at and current_time > expires_at: + logger.info(f"Cleaning up expired file batch: {info['id']}") + await self.kvstore.delete(f"{OPENAI_VECTOR_STORES_FILE_BATCHES_PREFIX}{info['id']}") + # Remove from in-memory cache if present + self.openai_file_batches.pop(info["id"], None) + expired_count += 1 + + if expired_count > 0: + logger.info(f"Cleaned up {expired_count} expired file batches") + + async def _resume_incomplete_batches(self) -> None: + """Resume processing of incomplete file batches after server restart.""" + for batch_id, batch_info in self.openai_file_batches.items(): + if batch_info["status"] == "in_progress": + logger.info(f"Resuming incomplete file batch: {batch_id}") + # Restart the background processing task + task = asyncio.create_task(self._process_file_batch_async(batch_id, batch_info)) + self._file_batch_tasks[batch_id] = task + async def initialize_openai_vector_stores(self) -> None: - """Load existing OpenAI vector stores into the in-memory cache.""" + """Load existing OpenAI vector stores and file batches into the in-memory cache.""" self.openai_vector_stores = await self._load_openai_vector_stores() + self.openai_file_batches = await self._load_openai_vector_store_file_batches() + self._file_batch_tasks = {} + await self._resume_incomplete_batches() + self._last_file_batch_cleanup_time = 0 @abstractmethod async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: @@ -615,7 +690,6 @@ class OpenAIVectorStoreMixin(ABC): chunk_overlap_tokens, attributes, ) - if not chunks: vector_store_file_object.status = "failed" vector_store_file_object.last_error = VectorStoreFileLastError( @@ -828,7 +902,227 @@ class OpenAIVectorStoreMixin(ABC): chunking_strategy: VectorStoreChunkingStrategy | None = None, ) -> VectorStoreFileBatchObject: """Create a vector store file batch.""" - raise NotImplementedError("openai_create_vector_store_file_batch is not implemented yet") + if vector_store_id not in self.openai_vector_stores: + raise VectorStoreNotFoundError(vector_store_id) + + chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto() + + created_at = int(time.time()) + batch_id = f"batch_{uuid.uuid4()}" + # File batches expire after 7 days + expires_at = created_at + (7 * 24 * 60 * 60) + + # Initialize batch file counts - all files start as in_progress + file_counts = VectorStoreFileCounts( + completed=0, + cancelled=0, + failed=0, + in_progress=len(file_ids), + total=len(file_ids), + ) + + # Create batch object immediately with in_progress status + batch_object = VectorStoreFileBatchObject( + id=batch_id, + created_at=created_at, + vector_store_id=vector_store_id, + status="in_progress", + file_counts=file_counts, + ) + + batch_info = { + **batch_object.model_dump(), + "file_ids": file_ids, + "attributes": attributes, + "chunking_strategy": chunking_strategy.model_dump(), + "expires_at": expires_at, + } + await self._save_openai_vector_store_file_batch(batch_id, batch_info) + + # Start background processing of files + task = asyncio.create_task(self._process_file_batch_async(batch_id, batch_info)) + self._file_batch_tasks[batch_id] = task + + # Run cleanup if needed (throttled to once every 1 day) + current_time = int(time.time()) + if current_time - self._last_file_batch_cleanup_time >= FILE_BATCH_CLEANUP_INTERVAL_SECONDS: + logger.info("Running throttled cleanup of expired file batches") + asyncio.create_task(self._cleanup_expired_file_batches()) + self._last_file_batch_cleanup_time = current_time + + return batch_object + + async def _process_files_with_concurrency( + self, + file_ids: list[str], + vector_store_id: str, + attributes: dict[str, Any], + chunking_strategy_obj: Any, + batch_id: str, + batch_info: dict[str, Any], + ) -> None: + """Process files with controlled concurrency and chunking.""" + semaphore = asyncio.Semaphore(MAX_CONCURRENT_FILES_PER_BATCH) + + async def process_single_file(file_id: str) -> tuple[str, bool]: + """Process a single file with concurrency control.""" + async with semaphore: + try: + await self.openai_attach_file_to_vector_store( + vector_store_id=vector_store_id, + file_id=file_id, + attributes=attributes, + chunking_strategy=chunking_strategy_obj, + ) + return file_id, True + except Exception as e: + logger.error(f"Failed to process file {file_id} in batch {batch_id}: {e}") + return file_id, False + + # Process files in chunks to avoid creating too many tasks at once + total_files = len(file_ids) + for chunk_start in range(0, total_files, FILE_BATCH_CHUNK_SIZE): + chunk_end = min(chunk_start + FILE_BATCH_CHUNK_SIZE, total_files) + chunk = file_ids[chunk_start:chunk_end] + + logger.info( + f"Processing chunk {chunk_start // FILE_BATCH_CHUNK_SIZE + 1} of {(total_files + FILE_BATCH_CHUNK_SIZE - 1) // FILE_BATCH_CHUNK_SIZE} ({len(chunk)} files)" + ) + + async with asyncio.TaskGroup() as tg: + chunk_tasks = [tg.create_task(process_single_file(file_id)) for file_id in chunk] + + chunk_results = [task.result() for task in chunk_tasks] + + # Update counts after each chunk for progressive feedback + for _, success in chunk_results: + self._update_file_counts(batch_info, success=success) + + # Save progress after each chunk + await self._save_openai_vector_store_file_batch(batch_id, batch_info) + + def _update_file_counts(self, batch_info: dict[str, Any], success: bool) -> None: + """Update file counts based on processing result.""" + if success: + batch_info["file_counts"]["completed"] += 1 + else: + batch_info["file_counts"]["failed"] += 1 + batch_info["file_counts"]["in_progress"] -= 1 + + def _update_batch_status(self, batch_info: dict[str, Any]) -> None: + """Update final batch status based on file processing results.""" + if batch_info["file_counts"]["failed"] == 0: + batch_info["status"] = "completed" + elif batch_info["file_counts"]["completed"] == 0: + batch_info["status"] = "failed" + else: + batch_info["status"] = "completed" # Partial success counts as completed + + async def _process_file_batch_async( + self, + batch_id: str, + batch_info: dict[str, Any], + ) -> None: + """Process files in a batch asynchronously in the background.""" + file_ids = batch_info["file_ids"] + attributes = batch_info["attributes"] + chunking_strategy = batch_info["chunking_strategy"] + vector_store_id = batch_info["vector_store_id"] + chunking_strategy_adapter: TypeAdapter[VectorStoreChunkingStrategy] = TypeAdapter(VectorStoreChunkingStrategy) + chunking_strategy_obj = chunking_strategy_adapter.validate_python(chunking_strategy) + + try: + # Process all files with controlled concurrency + await self._process_files_with_concurrency( + file_ids=file_ids, + vector_store_id=vector_store_id, + attributes=attributes, + chunking_strategy_obj=chunking_strategy_obj, + batch_id=batch_id, + batch_info=batch_info, + ) + + # Update final batch status + self._update_batch_status(batch_info) + await self._save_openai_vector_store_file_batch(batch_id, batch_info) + + logger.info(f"File batch {batch_id} processing completed with status: {batch_info['status']}") + + except asyncio.CancelledError: + logger.info(f"File batch {batch_id} processing was cancelled") + # Clean up task reference if it still exists + self._file_batch_tasks.pop(batch_id, None) + raise # Re-raise to ensure proper cancellation propagation + finally: + # Always clean up task reference when processing ends + self._file_batch_tasks.pop(batch_id, None) + + def _get_and_validate_batch(self, batch_id: str, vector_store_id: str) -> dict[str, Any]: + """Get and validate batch exists and belongs to vector store.""" + if vector_store_id not in self.openai_vector_stores: + raise VectorStoreNotFoundError(vector_store_id) + + if batch_id not in self.openai_file_batches: + raise ValueError(f"File batch {batch_id} not found") + + batch_info = self.openai_file_batches[batch_id] + + # Check if batch has expired (read-only check) + expires_at = batch_info.get("expires_at") + if expires_at: + current_time = int(time.time()) + if current_time > expires_at: + raise ValueError(f"File batch {batch_id} has expired after 7 days from creation") + + if batch_info["vector_store_id"] != vector_store_id: + raise ValueError(f"File batch {batch_id} does not belong to vector store {vector_store_id}") + + return batch_info + + def _paginate_objects( + self, + objects: list[Any], + limit: int | None = 20, + after: str | None = None, + before: str | None = None, + ) -> tuple[list[Any], bool, str | None, str | None]: + """Apply pagination to a list of objects with id fields.""" + limit = min(limit or 20, 100) # Cap at 100 as per OpenAI + + # Find start index + start_idx = 0 + if after: + for i, obj in enumerate(objects): + if obj.id == after: + start_idx = i + 1 + break + + # Find end index + end_idx = start_idx + limit + if before: + for i, obj in enumerate(objects[start_idx:], start_idx): + if obj.id == before: + end_idx = i + break + + # Apply pagination + paginated_objects = objects[start_idx:end_idx] + + # Determine pagination info + has_more = end_idx < len(objects) + first_id = paginated_objects[0].id if paginated_objects else None + last_id = paginated_objects[-1].id if paginated_objects else None + + return paginated_objects, has_more, first_id, last_id + + async def openai_retrieve_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + ) -> VectorStoreFileBatchObject: + """Retrieve a vector store file batch.""" + batch_info = self._get_and_validate_batch(batch_id, vector_store_id) + return VectorStoreFileBatchObject(**batch_info) async def openai_list_files_in_vector_store_file_batch( self, @@ -841,15 +1135,39 @@ class OpenAIVectorStoreMixin(ABC): order: str | None = "desc", ) -> VectorStoreFilesListInBatchResponse: """Returns a list of vector store files in a batch.""" - raise NotImplementedError("openai_list_files_in_vector_store_file_batch is not implemented yet") + batch_info = self._get_and_validate_batch(batch_id, vector_store_id) + batch_file_ids = batch_info["file_ids"] - async def openai_retrieve_vector_store_file_batch( - self, - batch_id: str, - vector_store_id: str, - ) -> VectorStoreFileBatchObject: - """Retrieve a vector store file batch.""" - raise NotImplementedError("openai_retrieve_vector_store_file_batch is not implemented yet") + # Load file objects for files in this batch + batch_file_objects = [] + + for file_id in batch_file_ids: + try: + file_info = await self._load_openai_vector_store_file(vector_store_id, file_id) + file_object = VectorStoreFileObject(**file_info) + + # Apply status filter if provided + if filter and file_object.status != filter: + continue + + batch_file_objects.append(file_object) + except Exception as e: + logger.warning(f"Could not load file {file_id} from batch {batch_id}: {e}") + continue + + # Sort by created_at + reverse_order = order == "desc" + batch_file_objects.sort(key=lambda x: x.created_at, reverse=reverse_order) + + # Apply pagination using helper + paginated_files, has_more, first_id, last_id = self._paginate_objects(batch_file_objects, limit, after, before) + + return VectorStoreFilesListInBatchResponse( + data=paginated_files, + first_id=first_id, + last_id=last_id, + has_more=has_more, + ) async def openai_cancel_vector_store_file_batch( self, @@ -857,4 +1175,24 @@ class OpenAIVectorStoreMixin(ABC): vector_store_id: str, ) -> VectorStoreFileBatchObject: """Cancel a vector store file batch.""" - raise NotImplementedError("openai_cancel_vector_store_file_batch is not implemented yet") + batch_info = self._get_and_validate_batch(batch_id, vector_store_id) + + if batch_info["status"] not in ["in_progress"]: + raise ValueError(f"Cannot cancel batch {batch_id} with status {batch_info['status']}") + + # Cancel the actual processing task if it exists + if batch_id in self._file_batch_tasks: + task = self._file_batch_tasks[batch_id] + if not task.done(): + task.cancel() + logger.info(f"Cancelled processing task for file batch: {batch_id}") + # Remove from task tracking + del self._file_batch_tasks[batch_id] + + batch_info["status"] = "cancelled" + + await self._save_openai_vector_store_file_batch(batch_id, batch_info) + + updated_batch = VectorStoreFileBatchObject(**batch_info) + + return updated_batch diff --git a/tests/integration/vector_io/test_openai_vector_stores.py b/tests/integration/vector_io/test_openai_vector_stores.py index 0c60acd27..bc3ae08a3 100644 --- a/tests/integration/vector_io/test_openai_vector_stores.py +++ b/tests/integration/vector_io/test_openai_vector_stores.py @@ -902,3 +902,224 @@ def test_openai_vector_store_search_modes(llama_stack_client, client_with_models search_mode=search_mode, ) assert search_response is not None + + +def test_openai_vector_store_file_batch_create_and_retrieve(compat_client_with_empty_stores, client_with_models): + """Test creating and retrieving a vector store file batch.""" + skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) + + compat_client = compat_client_with_empty_stores + + # Create a vector store + vector_store = compat_client.vector_stores.create(name="batch_test_store") + + # Create multiple files + file_ids = [] + for i in range(3): + with BytesIO(f"This is batch test file {i}".encode()) as file_buffer: + file_buffer.name = f"batch_test_{i}.txt" + file = compat_client.files.create(file=file_buffer, purpose="assistants") + file_ids.append(file.id) + + # Create a file batch + batch = compat_client.vector_stores.file_batches.create( + vector_store_id=vector_store.id, + file_ids=file_ids, + ) + + assert batch is not None + assert batch.object == "vector_store.file_batch" + assert batch.vector_store_id == vector_store.id + assert batch.status in ["in_progress", "completed"] + assert batch.file_counts.total == len(file_ids) + assert hasattr(batch, "id") + assert hasattr(batch, "created_at") + + # Wait for batch processing to complete + max_retries = 30 # 30 seconds max wait + retries = 0 + retrieved_batch = None + while retries < max_retries: + retrieved_batch = compat_client.vector_stores.file_batches.retrieve( + vector_store_id=vector_store.id, + batch_id=batch.id, + ) + if retrieved_batch.status in ["completed", "failed"]: + break + time.sleep(1) + retries += 1 + + assert retrieved_batch is not None + assert retrieved_batch.id == batch.id + assert retrieved_batch.vector_store_id == vector_store.id + assert retrieved_batch.object == "vector_store.file_batch" + assert retrieved_batch.file_counts.total == len(file_ids) + assert retrieved_batch.status == "completed" # Should be completed after processing + + +def test_openai_vector_store_file_batch_list_files(compat_client_with_empty_stores, client_with_models): + """Test listing files in a vector store file batch.""" + skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) + + compat_client = compat_client_with_empty_stores + + # Create a vector store + vector_store = compat_client.vector_stores.create(name="batch_list_test_store") + + # Create multiple files + file_ids = [] + for i in range(5): + with BytesIO(f"This is batch list test file {i}".encode()) as file_buffer: + file_buffer.name = f"batch_list_test_{i}.txt" + file = compat_client.files.create(file=file_buffer, purpose="assistants") + file_ids.append(file.id) + + # Create a file batch + batch = compat_client.vector_stores.file_batches.create( + vector_store_id=vector_store.id, + file_ids=file_ids, + ) + + # Wait for batch processing to complete + max_retries = 30 # 30 seconds max wait + retries = 0 + while retries < max_retries: + retrieved_batch = compat_client.vector_stores.file_batches.retrieve( + vector_store_id=vector_store.id, + batch_id=batch.id, + ) + if retrieved_batch.status in ["completed", "failed"]: + break + time.sleep(1) + retries += 1 + + # List all files in the batch + files_response = compat_client.vector_stores.file_batches.list_files( + vector_store_id=vector_store.id, + batch_id=batch.id, + ) + + assert files_response is not None + assert files_response.object == "list" + assert hasattr(files_response, "data") + assert len(files_response.data) == len(file_ids) + + # Verify all files are in the response + response_file_ids = {file.id for file in files_response.data} + assert response_file_ids == set(file_ids) + + # Test pagination with limit + limited_response = compat_client.vector_stores.file_batches.list_files( + vector_store_id=vector_store.id, + batch_id=batch.id, + limit=3, + ) + + assert len(limited_response.data) == 3 + assert limited_response.has_more is True + + # Test pagination with after cursor + first_page = compat_client.vector_stores.file_batches.list_files( + vector_store_id=vector_store.id, + batch_id=batch.id, + limit=2, + ) + + second_page = compat_client.vector_stores.file_batches.list_files( + vector_store_id=vector_store.id, + batch_id=batch.id, + limit=2, + after=first_page.data[-1].id, + ) + + assert len(first_page.data) == 2 + assert len(second_page.data) <= 3 # Should be <= remaining files + # Ensure no overlap between pages + first_page_ids = {file.id for file in first_page.data} + second_page_ids = {file.id for file in second_page.data} + assert first_page_ids.isdisjoint(second_page_ids) + + +def test_openai_vector_store_file_batch_cancel(compat_client_with_empty_stores, client_with_models): + """Test cancelling a vector store file batch.""" + skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) + + compat_client = compat_client_with_empty_stores + + # Create a vector store + vector_store = compat_client.vector_stores.create(name="batch_cancel_test_store") + + # Create multiple files + file_ids = [] + for i in range(3): + with BytesIO(f"This is batch cancel test file {i}".encode()) as file_buffer: + file_buffer.name = f"batch_cancel_test_{i}.txt" + file = compat_client.files.create(file=file_buffer, purpose="assistants") + file_ids.append(file.id) + + # Create a file batch + batch = compat_client.vector_stores.file_batches.create( + vector_store_id=vector_store.id, + file_ids=file_ids, + ) + # Try to cancel the batch (may fail if already completed) + try: + cancelled_batch = compat_client.vector_stores.file_batches.cancel( + vector_store_id=vector_store.id, + batch_id=batch.id, + ) + + assert cancelled_batch is not None + assert cancelled_batch.id == batch.id + assert cancelled_batch.vector_store_id == vector_store.id + assert cancelled_batch.status == "cancelled" + assert cancelled_batch.object == "vector_store.file_batch" + except Exception as e: + # If cancellation fails because batch is already completed, that's acceptable + if "Cannot cancel" in str(e) or "already completed" in str(e): + pytest.skip(f"Batch completed too quickly to cancel: {e}") + else: + raise + + +def test_openai_vector_store_file_batch_error_handling(compat_client_with_empty_stores, client_with_models): + """Test error handling for file batch operations.""" + skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) + + compat_client = compat_client_with_empty_stores + + # Create a vector store + vector_store = compat_client.vector_stores.create(name="batch_error_test_store") + + # Test with invalid file IDs (should handle gracefully) + file_ids = ["invalid_file_id_1", "invalid_file_id_2"] + + batch = compat_client.vector_stores.file_batches.create( + vector_store_id=vector_store.id, + file_ids=file_ids, + ) + + assert batch is not None + assert batch.file_counts.total == len(file_ids) + # Invalid files should be marked as failed + assert batch.file_counts.failed >= 0 # Implementation may vary + + # Determine expected errors based on client type + if isinstance(compat_client, LlamaStackAsLibraryClient): + errors = ValueError + else: + errors = (BadRequestError, OpenAIBadRequestError) + + # Test retrieving non-existent batch + with pytest.raises(errors): # Should raise an error for non-existent batch + compat_client.vector_stores.file_batches.retrieve( + vector_store_id=vector_store.id, + batch_id="non_existent_batch_id", + ) + + # Test operations on non-existent vector store + with pytest.raises(errors): # Should raise an error for non-existent vector store + compat_client.vector_stores.file_batches.create( + vector_store_id="non_existent_vector_store", + file_ids=["any_file_id"], + ) diff --git a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py index 98889f38e..d338588c5 100644 --- a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py +++ b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py @@ -6,16 +6,22 @@ import json import time -from unittest.mock import AsyncMock +from unittest.mock import AsyncMock, patch import numpy as np import pytest +from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import Chunk, QueryChunksResponse +from llama_stack.apis.vector_io import ( + Chunk, + QueryChunksResponse, + VectorStoreChunkingStrategyAuto, + VectorStoreFileObject, +) from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREFIX -# This test is a unit test for the inline VectoerIO providers. This should only contain +# This test is a unit test for the inline VectorIO providers. This should only contain # tests which are specific to this class. More general (API-level) tests should be placed in # tests/integration/vector_io/ # @@ -25,6 +31,24 @@ from llama_stack.providers.remote.vector_io.milvus.milvus import VECTOR_DBS_PREF # -v -s --tb=short --disable-warnings --asyncio-mode=auto +@pytest.fixture(autouse=True) +def mock_resume_file_batches(request): + """Mock the resume functionality to prevent stale file batches from being processed during tests.""" + # Skip mocking for tests that specifically test the resume functionality + if any( + test_name in request.node.name + for test_name in ["test_only_in_progress_batches_resumed", "test_file_batch_persistence_across_restarts"] + ): + yield + return + + with patch( + "llama_stack.providers.utils.memory.openai_vector_store_mixin.OpenAIVectorStoreMixin._resume_incomplete_batches", + new_callable=AsyncMock, + ): + yield + + async def test_initialize_index(vector_index): await vector_index.initialize() @@ -294,3 +318,673 @@ async def test_delete_openai_vector_store_file_from_storage(vector_io_adapter, t assert loaded_file_info == {} loaded_contents = await vector_io_adapter._load_openai_vector_store_file_contents(store_id, file_id) assert loaded_contents == [] + + +async def test_create_vector_store_file_batch(vector_io_adapter): + """Test creating a file batch.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2", "file_3"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock attach method and batch processing to avoid actual processing + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + assert batch.vector_store_id == store_id + assert batch.status == "in_progress" + assert batch.file_counts.total == len(file_ids) + assert batch.file_counts.in_progress == len(file_ids) + assert batch.id in vector_io_adapter.openai_file_batches + + +async def test_retrieve_vector_store_file_batch(vector_io_adapter): + """Test retrieving a file batch.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + + # Create batch first + created_batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Retrieve batch + retrieved_batch = await vector_io_adapter.openai_retrieve_vector_store_file_batch( + batch_id=created_batch.id, + vector_store_id=store_id, + ) + + assert retrieved_batch.id == created_batch.id + assert retrieved_batch.vector_store_id == store_id + assert retrieved_batch.status == "in_progress" + + +async def test_cancel_vector_store_file_batch(vector_io_adapter): + """Test cancelling a file batch.""" + store_id = "vs_1234" + file_ids = ["file_1"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock both file attachment and batch processing to prevent automatic completion + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Cancel batch + cancelled_batch = await vector_io_adapter.openai_cancel_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + ) + + assert cancelled_batch.status == "cancelled" + + +async def test_list_files_in_vector_store_file_batch(vector_io_adapter): + """Test listing files in a batch.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2"] + + # Setup vector store with files + files = {} + for i, file_id in enumerate(file_ids): + files[file_id] = VectorStoreFileObject( + id=file_id, + object="vector_store.file", + usage_bytes=1000, + created_at=int(time.time()) + i, + vector_store_id=store_id, + status="completed", + chunking_strategy=VectorStoreChunkingStrategyAuto(), + ) + + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": files, + "file_ids": file_ids, + } + + # Mock file loading + vector_io_adapter._load_openai_vector_store_file = AsyncMock( + side_effect=lambda vs_id, f_id: files[f_id].model_dump() + ) + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # List files + response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + ) + + assert len(response.data) == len(file_ids) + assert response.first_id is not None + assert response.last_id is not None + + +async def test_file_batch_validation_errors(vector_io_adapter): + """Test file batch validation errors.""" + # Test nonexistent vector store + with pytest.raises(VectorStoreNotFoundError): + await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id="nonexistent", + file_ids=["file_1"], + ) + + # Setup store for remaining tests + store_id = "vs_test" + vector_io_adapter.openai_vector_stores[store_id] = {"id": store_id, "files": {}, "file_ids": []} + + # Test nonexistent batch + with pytest.raises(ValueError, match="File batch .* not found"): + await vector_io_adapter.openai_retrieve_vector_store_file_batch( + batch_id="nonexistent_batch", + vector_store_id=store_id, + ) + + # Test wrong vector store for batch + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=["file_1"], + ) + + # Create wrong_store so it exists but the batch doesn't belong to it + wrong_store_id = "wrong_store" + vector_io_adapter.openai_vector_stores[wrong_store_id] = {"id": wrong_store_id, "files": {}, "file_ids": []} + + with pytest.raises(ValueError, match="does not belong to vector store"): + await vector_io_adapter.openai_retrieve_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=wrong_store_id, + ) + + +async def test_file_batch_pagination(vector_io_adapter): + """Test file batch pagination.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2", "file_3", "file_4", "file_5"] + + # Setup vector store with multiple files + files = {} + for i, file_id in enumerate(file_ids): + files[file_id] = VectorStoreFileObject( + id=file_id, + object="vector_store.file", + usage_bytes=1000, + created_at=int(time.time()) + i, + vector_store_id=store_id, + status="completed", + chunking_strategy=VectorStoreChunkingStrategyAuto(), + ) + + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": files, + "file_ids": file_ids, + } + + # Mock file loading + vector_io_adapter._load_openai_vector_store_file = AsyncMock( + side_effect=lambda vs_id, f_id: files[f_id].model_dump() + ) + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Test pagination with limit + response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + limit=3, + ) + + assert len(response.data) == 3 + assert response.has_more is True + + # Test pagination with after cursor + first_page = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + limit=2, + ) + + second_page = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + limit=2, + after=first_page.last_id, + ) + + assert len(first_page.data) == 2 + assert len(second_page.data) == 2 + # Ensure no overlap between pages + first_page_ids = {file_obj.id for file_obj in first_page.data} + second_page_ids = {file_obj.id for file_obj in second_page.data} + assert first_page_ids.isdisjoint(second_page_ids) + # Verify we got all expected files across both pages (in desc order: file_5, file_4, file_3, file_2, file_1) + all_returned_ids = first_page_ids | second_page_ids + assert all_returned_ids == {"file_2", "file_3", "file_4", "file_5"} + + +async def test_file_batch_status_filtering(vector_io_adapter): + """Test file batch status filtering.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2", "file_3"] + + # Setup vector store with files having different statuses + files = {} + statuses = ["completed", "in_progress", "completed"] + for i, (file_id, status) in enumerate(zip(file_ids, statuses, strict=False)): + files[file_id] = VectorStoreFileObject( + id=file_id, + object="vector_store.file", + usage_bytes=1000, + created_at=int(time.time()) + i, + vector_store_id=store_id, + status=status, + chunking_strategy=VectorStoreChunkingStrategyAuto(), + ) + + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": files, + "file_ids": file_ids, + } + + # Mock file loading + vector_io_adapter._load_openai_vector_store_file = AsyncMock( + side_effect=lambda vs_id, f_id: files[f_id].model_dump() + ) + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Test filtering by completed status + response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + filter="completed", + ) + + assert len(response.data) == 2 # Only 2 completed files + for file_obj in response.data: + assert file_obj.status == "completed" + + # Test filtering by in_progress status + response = await vector_io_adapter.openai_list_files_in_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + filter="in_progress", + ) + + assert len(response.data) == 1 # Only 1 in_progress file + assert response.data[0].status == "in_progress" + + +async def test_cancel_completed_batch_fails(vector_io_adapter): + """Test that cancelling completed batch fails.""" + store_id = "vs_1234" + file_ids = ["file_1"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Manually update status to completed + batch_info = vector_io_adapter.openai_file_batches[batch.id] + batch_info["status"] = "completed" + + # Try to cancel - should fail + with pytest.raises(ValueError, match="Cannot cancel batch .* with status completed"): + await vector_io_adapter.openai_cancel_vector_store_file_batch( + batch_id=batch.id, + vector_store_id=store_id, + ) + + +async def test_file_batch_persistence_across_restarts(vector_io_adapter): + """Test that in-progress file batches are persisted and resumed after restart.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock attach method and batch processing to avoid actual processing + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + batch_id = batch.id + + # Verify batch is saved to persistent storage + assert batch_id in vector_io_adapter.openai_file_batches + saved_batch_key = f"openai_vector_stores_file_batches:v3::{batch_id}" + saved_batch = await vector_io_adapter.kvstore.get(saved_batch_key) + assert saved_batch is not None + + # Verify the saved batch data contains all necessary information + saved_data = json.loads(saved_batch) + assert saved_data["id"] == batch_id + assert saved_data["status"] == "in_progress" + assert saved_data["file_ids"] == file_ids + + # Simulate restart - clear in-memory cache and reload + vector_io_adapter.openai_file_batches.clear() + + # Temporarily restore the real initialize_openai_vector_stores method + from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin + + real_method = OpenAIVectorStoreMixin.initialize_openai_vector_stores + await real_method(vector_io_adapter) + + # Re-mock the processing method to prevent any resumed batches from processing + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Verify batch was restored + assert batch_id in vector_io_adapter.openai_file_batches + restored_batch = vector_io_adapter.openai_file_batches[batch_id] + assert restored_batch["status"] == "in_progress" + assert restored_batch["id"] == batch_id + assert vector_io_adapter.openai_file_batches[batch_id]["file_ids"] == file_ids + + +async def test_cancelled_batch_persists_in_storage(vector_io_adapter): + """Test that cancelled batches persist in storage with updated status.""" + store_id = "vs_1234" + file_ids = ["file_1", "file_2"] + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock attach method and batch processing to avoid actual processing + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Create batch + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + batch_id = batch.id + + # Verify batch is initially saved to persistent storage + saved_batch_key = f"openai_vector_stores_file_batches:v3::{batch_id}" + saved_batch = await vector_io_adapter.kvstore.get(saved_batch_key) + assert saved_batch is not None + + # Cancel the batch + cancelled_batch = await vector_io_adapter.openai_cancel_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=store_id, + ) + + # Verify batch status is cancelled + assert cancelled_batch.status == "cancelled" + + # Verify batch persists in storage with cancelled status + updated_batch = await vector_io_adapter.kvstore.get(saved_batch_key) + assert updated_batch is not None + batch_data = json.loads(updated_batch) + assert batch_data["status"] == "cancelled" + + # Batch should remain in memory cache (matches vector store pattern) + assert batch_id in vector_io_adapter.openai_file_batches + assert vector_io_adapter.openai_file_batches[batch_id]["status"] == "cancelled" + + +async def test_only_in_progress_batches_resumed(vector_io_adapter): + """Test that only in-progress batches are resumed for processing, but all batches are persisted.""" + store_id = "vs_1234" + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock attach method and batch processing to prevent automatic completion + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Create multiple batches + batch1 = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, file_ids=["file_1"] + ) + batch2 = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, file_ids=["file_2"] + ) + + # Complete one batch (should persist with completed status) + batch1_info = vector_io_adapter.openai_file_batches[batch1.id] + batch1_info["status"] = "completed" + await vector_io_adapter._save_openai_vector_store_file_batch(batch1.id, batch1_info) + + # Cancel the other batch (should persist with cancelled status) + await vector_io_adapter.openai_cancel_vector_store_file_batch(batch_id=batch2.id, vector_store_id=store_id) + + # Create a third batch that stays in progress + batch3 = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, file_ids=["file_3"] + ) + + # Simulate restart - first clear memory, then reload from persistence + vector_io_adapter.openai_file_batches.clear() + + # Mock the processing method BEFORE calling initialize to capture the resume calls + mock_process = AsyncMock() + vector_io_adapter._process_file_batch_async = mock_process + + # Temporarily restore the real initialize_openai_vector_stores method + from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin + + real_method = OpenAIVectorStoreMixin.initialize_openai_vector_stores + await real_method(vector_io_adapter) + + # All batches should be restored from persistence + assert batch1.id in vector_io_adapter.openai_file_batches # completed, persisted + assert batch2.id in vector_io_adapter.openai_file_batches # cancelled, persisted + assert batch3.id in vector_io_adapter.openai_file_batches # in-progress, restored + + # Check their statuses + assert vector_io_adapter.openai_file_batches[batch1.id]["status"] == "completed" + assert vector_io_adapter.openai_file_batches[batch2.id]["status"] == "cancelled" + assert vector_io_adapter.openai_file_batches[batch3.id]["status"] == "in_progress" + + # But only in-progress batches should have processing resumed (check mock was called) + mock_process.assert_called() + + +async def test_cleanup_expired_file_batches(vector_io_adapter): + """Test that expired file batches are cleaned up properly.""" + store_id = "vs_1234" + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Mock processing to prevent automatic completion + vector_io_adapter.openai_attach_file_to_vector_store = AsyncMock() + vector_io_adapter._process_file_batch_async = AsyncMock() + + # Create batches with different ages + import time + + current_time = int(time.time()) + + # Create an old expired batch (10 days old) + old_batch_info = { + "id": "batch_old", + "vector_store_id": store_id, + "status": "completed", + "created_at": current_time - (10 * 24 * 60 * 60), # 10 days ago + "expires_at": current_time - (3 * 24 * 60 * 60), # Expired 3 days ago + "file_ids": ["file_1"], + } + + # Create a recent valid batch + new_batch_info = { + "id": "batch_new", + "vector_store_id": store_id, + "status": "completed", + "created_at": current_time - (1 * 24 * 60 * 60), # 1 day ago + "expires_at": current_time + (6 * 24 * 60 * 60), # Expires in 6 days + "file_ids": ["file_2"], + } + + # Store both batches in persistent storage + await vector_io_adapter._save_openai_vector_store_file_batch("batch_old", old_batch_info) + await vector_io_adapter._save_openai_vector_store_file_batch("batch_new", new_batch_info) + + # Add to in-memory cache + vector_io_adapter.openai_file_batches["batch_old"] = old_batch_info + vector_io_adapter.openai_file_batches["batch_new"] = new_batch_info + + # Verify both batches exist before cleanup + assert "batch_old" in vector_io_adapter.openai_file_batches + assert "batch_new" in vector_io_adapter.openai_file_batches + + # Run cleanup + await vector_io_adapter._cleanup_expired_file_batches() + + # Verify expired batch was removed from memory + assert "batch_old" not in vector_io_adapter.openai_file_batches + assert "batch_new" in vector_io_adapter.openai_file_batches + + # Verify expired batch was removed from storage + old_batch_key = "openai_vector_stores_file_batches:v3::batch_old" + new_batch_key = "openai_vector_stores_file_batches:v3::batch_new" + + old_stored = await vector_io_adapter.kvstore.get(old_batch_key) + new_stored = await vector_io_adapter.kvstore.get(new_batch_key) + + assert old_stored is None # Expired batch should be deleted + assert new_stored is not None # Valid batch should remain + + +async def test_expired_batch_access_error(vector_io_adapter): + """Test that accessing expired batches returns clear error message.""" + store_id = "vs_1234" + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + # Create an expired batch + import time + + current_time = int(time.time()) + + expired_batch_info = { + "id": "batch_expired", + "vector_store_id": store_id, + "status": "completed", + "created_at": current_time - (10 * 24 * 60 * 60), # 10 days ago + "expires_at": current_time - (3 * 24 * 60 * 60), # Expired 3 days ago + "file_ids": ["file_1"], + } + + # Add to in-memory cache (simulating it was loaded before expiration) + vector_io_adapter.openai_file_batches["batch_expired"] = expired_batch_info + + # Try to access expired batch + with pytest.raises(ValueError, match="File batch batch_expired has expired after 7 days from creation"): + vector_io_adapter._get_and_validate_batch("batch_expired", store_id) + + +async def test_max_concurrent_files_per_batch(vector_io_adapter): + """Test that file batch processing respects MAX_CONCURRENT_FILES_PER_BATCH limit.""" + import asyncio + + store_id = "vs_1234" + + # Setup vector store + vector_io_adapter.openai_vector_stores[store_id] = { + "id": store_id, + "name": "Test Store", + "files": {}, + "file_ids": [], + } + + active_files = 0 + + async def mock_attach_file_with_delay(vector_store_id: str, file_id: str, **kwargs): + """Mock that tracks concurrency and blocks indefinitely to test concurrency limit.""" + nonlocal active_files + active_files += 1 + + # Block indefinitely to test concurrency limit + await asyncio.sleep(float("inf")) + + # Replace the attachment method + vector_io_adapter.openai_attach_file_to_vector_store = mock_attach_file_with_delay + + # Create a batch with more files than the concurrency limit + file_ids = [f"file_{i}" for i in range(8)] # 8 files, but limit should be 5 + + batch = await vector_io_adapter.openai_create_vector_store_file_batch( + vector_store_id=store_id, + file_ids=file_ids, + ) + + # Give time for the semaphore logic to start processing files + await asyncio.sleep(0.2) + + # Verify that only MAX_CONCURRENT_FILES_PER_BATCH files are processing concurrently + # The semaphore in _process_files_with_concurrency should limit this + from llama_stack.providers.utils.memory.openai_vector_store_mixin import MAX_CONCURRENT_FILES_PER_BATCH + + assert active_files == MAX_CONCURRENT_FILES_PER_BATCH, ( + f"Expected {MAX_CONCURRENT_FILES_PER_BATCH} active files, got {active_files}" + ) + + # Verify batch is in progress + assert batch.status == "in_progress" + assert batch.file_counts.total == 8 + assert batch.file_counts.in_progress == 8