mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 13:00:52 +00:00
Merge branch 'main' into responses_object
This commit is contained in:
commit
708b2c1b05
166 changed files with 6944 additions and 809 deletions
|
@ -29,12 +29,16 @@ class ListBatchesResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class Batches(Protocol):
|
||||
"""Protocol for batch processing API operations.
|
||||
|
||||
"""
|
||||
The Batches API enables efficient processing of multiple requests in a single operation,
|
||||
particularly useful for processing large datasets, batch evaluation workflows, and
|
||||
cost-effective inference at scale.
|
||||
|
||||
The API is designed to allow use of openai client libraries for seamless integration.
|
||||
|
||||
This API provides the following extensions:
|
||||
- idempotent batch creation
|
||||
|
||||
Note: This API is currently under active development and may undergo changes.
|
||||
"""
|
||||
|
||||
|
@ -45,6 +49,7 @@ class Batches(Protocol):
|
|||
endpoint: str,
|
||||
completion_window: Literal["24h"],
|
||||
metadata: dict[str, str] | None = None,
|
||||
idempotency_key: str | None = None,
|
||||
) -> BatchObject:
|
||||
"""Create a new batch for processing multiple API requests.
|
||||
|
||||
|
@ -52,6 +57,7 @@ class Batches(Protocol):
|
|||
:param endpoint: The endpoint to be used for all requests in the batch.
|
||||
:param completion_window: The time window within which the batch should be processed.
|
||||
:param metadata: Optional metadata for the batch.
|
||||
:param idempotency_key: Optional idempotency key. When provided, enables idempotent behavior.
|
||||
:returns: The created batch object.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -473,6 +473,28 @@ class EmbeddingsResponse(BaseModel):
|
|||
embeddings: list[list[float]]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RerankData(BaseModel):
|
||||
"""A single rerank result from a reranking response.
|
||||
|
||||
:param index: The original index of the document in the input list
|
||||
:param relevance_score: The relevance score from the model output. Values are inverted when applicable so that higher scores indicate greater relevance.
|
||||
"""
|
||||
|
||||
index: int
|
||||
relevance_score: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RerankResponse(BaseModel):
|
||||
"""Response from a reranking request.
|
||||
|
||||
:param data: List of rerank result objects, sorted by relevance score (descending)
|
||||
"""
|
||||
|
||||
data: list[RerankData]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIChatCompletionContentPartTextParam(BaseModel):
|
||||
"""Text content part for OpenAI-compatible chat completion messages.
|
||||
|
@ -1046,6 +1068,7 @@ class InferenceProvider(Protocol):
|
|||
:returns: A BatchCompletionResponse with the full completions.
|
||||
"""
|
||||
raise NotImplementedError("Batch completion is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/inference/chat-completion", method="POST")
|
||||
async def chat_completion(
|
||||
|
@ -1110,6 +1133,7 @@ class InferenceProvider(Protocol):
|
|||
:returns: A BatchChatCompletionResponse with the full completions.
|
||||
"""
|
||||
raise NotImplementedError("Batch chat completion is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/inference/embeddings", method="POST")
|
||||
async def embeddings(
|
||||
|
@ -1131,6 +1155,25 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/rerank", method="POST", experimental=True)
|
||||
async def rerank(
|
||||
self,
|
||||
model: str,
|
||||
query: str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
|
||||
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
|
||||
max_num_results: int | None = None,
|
||||
) -> RerankResponse:
|
||||
"""Rerank a list of documents based on their relevance to a query.
|
||||
|
||||
:param model: The identifier of the reranking model to use.
|
||||
:param query: The search query to rank items against. Can be a string, text content part, or image content part. The input must not exceed the model's max input token length.
|
||||
:param items: List of items to rerank. Each item can be a string, text content part, or image content part. Each input must not exceed the model's max input token length.
|
||||
:param max_num_results: (Optional) Maximum number of results to return. Default: returns all.
|
||||
:returns: RerankResponse with indices sorted by relevance score (descending).
|
||||
"""
|
||||
raise NotImplementedError("Reranking is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/openai/v1/completions", method="POST")
|
||||
async def openai_completion(
|
||||
self,
|
||||
|
|
|
@ -386,6 +386,7 @@ class MetricDataPoint(BaseModel):
|
|||
|
||||
timestamp: int
|
||||
value: float
|
||||
unit: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -518,7 +519,7 @@ class Telemetry(Protocol):
|
|||
metric_name: str,
|
||||
start_time: int,
|
||||
end_time: int | None = None,
|
||||
granularity: str | None = "1d",
|
||||
granularity: str | None = None,
|
||||
query_type: MetricQueryType = MetricQueryType.RANGE,
|
||||
label_matchers: list[MetricLabelMatcher] | None = None,
|
||||
) -> QueryMetricsResponse:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue