Stub in an initial OpenAI Responses API

Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
Ben Browning 2025-04-17 14:47:24 -04:00 committed by Ashwin Bharambe
parent c149cf2e0f
commit 70c088af3a
18 changed files with 441 additions and 0 deletions

View file

@ -18,6 +18,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::vllm`, `inline::sentence-transformers` |
| openai_responses | `inline::openai-responses` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |

View file

@ -24,6 +24,7 @@ class Api(Enum):
eval = "eval"
post_training = "post_training"
tool_runtime = "tool_runtime"
openai_responses = "openai_responses"
telemetry = "telemetry"

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .openai_responses import * # noqa: F401 F403

View file

@ -0,0 +1,91 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncIterator, List, Literal, Optional, Protocol, Union, runtime_checkable
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.schema_utils import json_schema_type, webmethod
@json_schema_type
class OpenAIResponseError(BaseModel):
code: str
message: str
@json_schema_type
class OpenAIResponseOutputMessageContentOutputText(BaseModel):
text: str
type: Literal["output_text"] = "output_text"
OpenAIResponseOutputMessageContent = Annotated[
Union[OpenAIResponseOutputMessageContentOutputText,],
Field(discriminator="type"),
]
@json_schema_type
class OpenAIResponseOutputMessage(BaseModel):
id: str
content: List[OpenAIResponseOutputMessageContent]
role: Literal["assistant"] = "assistant"
status: str
type: Literal["message"] = "message"
OpenAIResponseOutput = Annotated[
Union[OpenAIResponseOutputMessage,],
Field(discriminator="type"),
]
@json_schema_type
class OpenAIResponseObject(BaseModel):
created_at: int
error: Optional[OpenAIResponseError] = None
id: str
model: str
object: Literal["response"] = "response"
output: List[OpenAIResponseOutput]
parallel_tool_calls: bool = False
previous_response_id: Optional[str] = None
status: str
temperature: Optional[float] = None
top_p: Optional[float] = None
truncation: Optional[str] = None
user: Optional[str] = None
@json_schema_type
class OpenAIResponseObjectStream(BaseModel):
response: OpenAIResponseObject
type: Literal["response.created"] = "response.created"
@runtime_checkable
class OpenAIResponses(Protocol):
"""
OpenAI Responses API implementation.
"""
@webmethod(route="/openai/v1/responses/{id}", method="GET")
async def get_openai_response(
self,
id: str,
) -> OpenAIResponseObject: ...
@webmethod(route="/openai/v1/responses", method="POST")
async def create_openai_response(
self,
input: str,
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
) -> Union[OpenAIResponseObject, AsyncIterator[OpenAIResponseObjectStream]]: ...

View file

@ -16,6 +16,7 @@ from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference
from llama_stack.apis.inspect import Inspect
from llama_stack.apis.models import Models
from llama_stack.apis.openai_responses.openai_responses import OpenAIResponses
from llama_stack.apis.post_training import PostTraining
from llama_stack.apis.providers import Providers as ProvidersAPI
from llama_stack.apis.safety import Safety
@ -80,6 +81,7 @@ def api_protocol_map() -> Dict[Api, Any]:
Api.tool_groups: ToolGroups,
Api.tool_runtime: ToolRuntime,
Api.files: Files,
Api.openai_responses: OpenAIResponses,
}

View file

@ -149,6 +149,8 @@ class CommonRoutingTableImpl(RoutingTable):
p.benchmark_store = self
elif api == Api.tool_runtime:
p.tool_store = self
elif api == Api.openai_responses:
p.model_store = self
async def shutdown(self) -> None:
for p in self.impls_by_provider_id.values():

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from llama_stack.apis.datatypes import Api
from .config import OpenAIResponsesImplConfig
async def get_provider_impl(config: OpenAIResponsesImplConfig, deps: Dict[Api, Any]):
from .openai_responses import OpenAIResponsesImpl
impl = OpenAIResponsesImpl(config, deps[Api.models], deps[Api.inference])
await impl.initialize()
return impl

View file

@ -0,0 +1,24 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
class OpenAIResponsesImplConfig(BaseModel):
kvstore: KVStoreConfig
@classmethod
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
return {
"kvstore": SqliteKVStoreConfig.sample_run_config(
__distro_dir__=__distro_dir__,
db_name="openai_responses.db",
)
}

View file

@ -0,0 +1,126 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
from typing import AsyncIterator, List, Optional, cast
from llama_stack.apis.inference.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionContentPartTextParam,
OpenAIMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.models.models import Models, ModelType
from llama_stack.apis.openai_responses import OpenAIResponses
from llama_stack.apis.openai_responses.openai_responses import (
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseOutputMessage,
OpenAIResponseOutputMessageContentOutputText,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore import kvstore_impl
from .config import OpenAIResponsesImplConfig
logger = get_logger(name=__name__, category="openai_responses")
OPENAI_RESPONSES_PREFIX = "openai_responses:"
class OpenAIResponsesImpl(OpenAIResponses):
def __init__(self, config: OpenAIResponsesImplConfig, models_api: Models, inference_api: Inference):
self.config = config
self.models_api = models_api
self.inference_api = inference_api
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
async def shutdown(self) -> None:
logger.debug("OpenAIResponsesImpl.shutdown")
pass
async def get_openai_response(
self,
id: str,
) -> OpenAIResponseObject:
key = f"{OPENAI_RESPONSES_PREFIX}{id}"
response_json = await self.kvstore.get(key=key)
if response_json is None:
raise ValueError(f"OpenAI response with id '{id}' not found")
return OpenAIResponseObject.model_validate_json(response_json)
async def create_openai_response(
self,
input: str,
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
):
model_obj = await self.models_api.get_model(model)
if model_obj is None:
raise ValueError(f"Model '{model}' not found")
if model_obj.model_type == ModelType.embedding:
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
messages: List[OpenAIMessageParam] = []
if previous_response_id:
previous_response = await self.get_openai_response(previous_response_id)
messages.append(OpenAIAssistantMessageParam(content=previous_response.output[0].content[0].text))
messages.append(OpenAIUserMessageParam(content=input))
chat_response = await self.inference_api.openai_chat_completion(
model=model_obj.identifier,
messages=messages,
)
# type cast to appease mypy
chat_response = cast(OpenAIChatCompletion, chat_response)
output_messages = []
for choice in chat_response.choices:
output_content = ""
if isinstance(choice.message.content, str):
output_content = choice.message.content
elif isinstance(choice.message.content, OpenAIChatCompletionContentPartTextParam):
output_content = choice.message.content.text
# TODO: handle image content
output_messages.append(
OpenAIResponseOutputMessage(
id=f"msg_{uuid.uuid4()}",
content=[OpenAIResponseOutputMessageContentOutputText(text=output_content)],
status="completed",
)
)
response = OpenAIResponseObject(
created_at=chat_response.created,
id=f"resp-{uuid.uuid4()}",
model=model_obj.identifier,
object="response",
status="completed",
output=output_messages,
)
if store:
# Store in kvstore
key = f"{OPENAI_RESPONSES_PREFIX}{response.id}"
await self.kvstore.set(
key=key,
value=response.model_dump_json(),
)
if stream:
async def async_response() -> AsyncIterator[OpenAIResponseObjectStream]:
yield OpenAIResponseObjectStream(response=response)
return async_response()
return response

View file

@ -0,0 +1,25 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
def available_providers() -> List[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.openai_responses,
provider_type="inline::openai-responses",
pip_packages=[],
module="llama_stack.providers.inline.openai_responses",
config_class="llama_stack.providers.inline.openai_responses.config.OpenAIResponsesImplConfig",
api_dependencies=[
Api.models,
Api.inference,
],
),
]

View file

@ -31,4 +31,6 @@ distribution_spec:
- inline::rag-runtime
- remote::model-context-protocol
- remote::wolfram-alpha
openai_responses:
- inline::openai-responses
image_type: conda

View file

@ -5,6 +5,7 @@ apis:
- datasetio
- eval
- inference
- openai_responses
- safety
- scoring
- telemetry
@ -115,6 +116,14 @@ providers:
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db

View file

@ -5,6 +5,7 @@ apis:
- datasetio
- eval
- inference
- openai_responses
- safety
- scoring
- telemetry
@ -108,6 +109,14 @@ providers:
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:}
openai_responses:
- provider_id: openai-responses
provider_type: inline::openai-responses
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/openai_responses.db
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db

View file

@ -39,6 +39,7 @@ def get_distribution_template() -> DistributionTemplate:
"remote::model-context-protocol",
"remote::wolfram-alpha",
],
"openai_responses": ["inline::openai-responses"],
}
name = "remote-vllm"
inference_provider = Provider(

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,90 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from openai import OpenAI
from ..test_cases.test_case import TestCase
@pytest.fixture
def openai_client(client_with_models):
base_url = f"{client_with_models.base_url}/v1/openai/v1"
return OpenAI(base_url=base_url, api_key="bar")
@pytest.mark.parametrize(
"test_case",
[
"openai:responses:non_streaming_01",
"openai:responses:non_streaming_02",
],
)
def test_openai_responses_non_streaming(openai_client, client_with_models, text_model_id, test_case):
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = openai_client.responses.create(
model=text_model_id,
input=question,
stream=False,
)
output_text = response.output_text.lower().strip()
assert len(output_text) > 0
assert expected.lower() in output_text
retrieved_response = openai_client.responses.retrieve(response_id=response.id)
assert retrieved_response.output_text == response.output_text
next_response = openai_client.responses.create(
model=text_model_id, input="Repeat your previous response in all caps.", previous_response_id=response.id
)
next_output_text = next_response.output_text.strip()
assert expected.upper() in next_output_text
@pytest.mark.parametrize(
"test_case",
[
"openai:responses:streaming_01",
"openai:responses:streaming_02",
],
)
def test_openai_responses_streaming(openai_client, client_with_models, text_model_id, test_case):
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = openai_client.responses.create(
model=text_model_id,
input=question,
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history
)
streamed_content = []
response_id = ""
for chunk in response:
response_id = chunk.response.id
streamed_content.append(chunk.response.output_text.strip())
assert len(streamed_content) > 0
assert expected.lower() in "".join(streamed_content).lower()
retrieved_response = openai_client.responses.retrieve(response_id=response_id)
assert retrieved_response.output_text == "".join(streamed_content)
next_response = openai_client.responses.create(
model=text_model_id,
input="Repeat your previous response in all caps.",
previous_response_id=response_id,
stream=True,
)
next_streamed_content = []
for chunk in next_response:
next_streamed_content.append(chunk.response.output_text.strip())
assert expected.upper() in "".join(next_streamed_content)

View file

@ -0,0 +1,26 @@
{
"non_streaming_01": {
"data": {
"question": "Which planet do humans live on?",
"expected": "Earth"
}
},
"non_streaming_02": {
"data": {
"question": "Which planet has rings around it with a name starting with letter S?",
"expected": "Saturn"
}
},
"streaming_01": {
"data": {
"question": "What's the name of the Sun in latin?",
"expected": "Sol"
}
},
"streaming_02": {
"data": {
"question": "What is the name of the US captial?",
"expected": "Washington"
}
}
}

View file

@ -12,6 +12,7 @@ class TestCase:
_apis = [
"inference/chat_completion",
"inference/completion",
"openai/responses",
]
_jsonblob = {}