mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-05 21:49:13 +00:00
feat: associated models API with post_training
there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently. Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
63a9f08c9e
commit
71caa271ad
11 changed files with 393 additions and 23 deletions
|
@ -13,6 +13,7 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.job_types import JobStatus
|
||||
from llama_stack.apis.common.training_types import Checkpoint
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
@ -168,7 +169,13 @@ class PostTrainingJobArtifactsResponse(BaseModel):
|
|||
# TODO(ashwin): metrics, evals
|
||||
|
||||
|
||||
class ModelStore(Protocol):
|
||||
async def get_model(self, identifier: str) -> Model: ...
|
||||
|
||||
|
||||
class PostTraining(Protocol):
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
@webmethod(route="/post-training/supervised-fine-tune", method="POST")
|
||||
async def supervised_fine_tune(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue