mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-21 03:59:42 +00:00
feat: associated models API with post_training
there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently. Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
63a9f08c9e
commit
71caa271ad
11 changed files with 393 additions and 23 deletions
|
@ -21,7 +21,8 @@ async def get_routing_table_impl(
|
|||
) -> Any:
|
||||
from ..routing_tables.benchmarks import BenchmarksRoutingTable
|
||||
from ..routing_tables.datasets import DatasetsRoutingTable
|
||||
from ..routing_tables.models import ModelsRoutingTable
|
||||
from ..routing_tables.models import InferenceModelsRoutingTable
|
||||
from ..routing_tables.post_training_models import PostTrainingModelsRoutingTable
|
||||
from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable
|
||||
from ..routing_tables.shields import ShieldsRoutingTable
|
||||
from ..routing_tables.toolgroups import ToolGroupsRoutingTable
|
||||
|
@ -29,7 +30,8 @@ async def get_routing_table_impl(
|
|||
|
||||
api_to_tables = {
|
||||
"vector_dbs": VectorDBsRoutingTable,
|
||||
"models": ModelsRoutingTable,
|
||||
"models": InferenceModelsRoutingTable,
|
||||
"post_training_models": PostTrainingModelsRoutingTable,
|
||||
"shields": ShieldsRoutingTable,
|
||||
"datasets": DatasetsRoutingTable,
|
||||
"scoring_functions": ScoringFunctionsRoutingTable,
|
||||
|
@ -40,7 +42,12 @@ async def get_routing_table_impl(
|
|||
if api.value not in api_to_tables:
|
||||
raise ValueError(f"API {api.value} not found in router map")
|
||||
|
||||
impl = api_to_tables[api.value](impls_by_provider_id, dist_registry)
|
||||
# For post-training API, we want to use the post-training models routing table
|
||||
if api == Api.post_training:
|
||||
impl = PostTrainingModelsRoutingTable(impls_by_provider_id, dist_registry)
|
||||
else:
|
||||
impl = api_to_tables[api.value](impls_by_provider_id, dist_registry)
|
||||
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
||||
|
@ -51,6 +58,7 @@ async def get_auto_router_impl(
|
|||
from .datasets import DatasetIORouter
|
||||
from .eval_scoring import EvalRouter, ScoringRouter
|
||||
from .inference import InferenceRouter
|
||||
from .post_training import PostTrainingRouter
|
||||
from .safety import SafetyRouter
|
||||
from .tool_runtime import ToolRuntimeRouter
|
||||
from .vector_io import VectorIORouter
|
||||
|
@ -63,6 +71,7 @@ async def get_auto_router_impl(
|
|||
"scoring": ScoringRouter,
|
||||
"eval": EvalRouter,
|
||||
"tool_runtime": ToolRuntimeRouter,
|
||||
"post_training": PostTrainingRouter,
|
||||
}
|
||||
api_to_deps = {
|
||||
"inference": {"telemetry": Api.telemetry},
|
||||
|
|
101
llama_stack/distribution/routers/post_training.py
Normal file
101
llama_stack/distribution/routers/post_training.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.post_training import (
|
||||
AlgorithmConfig,
|
||||
DPOAlignmentConfig,
|
||||
ListPostTrainingJobsResponse,
|
||||
PostTraining,
|
||||
PostTrainingJob,
|
||||
PostTrainingJobArtifactsResponse,
|
||||
PostTrainingJobStatusResponse,
|
||||
TrainingConfig,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
|
||||
|
||||
class PostTrainingRouter(PostTraining):
|
||||
"""Routes to an provider based on the model"""
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing InferenceRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: dict[str, Any],
|
||||
logger_config: dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: str | None = None,
|
||||
algorithm_config: AlgorithmConfig | None = None,
|
||||
) -> PostTrainingJob:
|
||||
provider = self.routing_table.get_provider_impl(model)
|
||||
params = dict(
|
||||
job_uuid=job_uuid,
|
||||
training_config=training_config,
|
||||
hyperparam_search_config=hyperparam_search_config,
|
||||
logger_config=logger_config,
|
||||
model=model,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
algorithm_config=algorithm_config,
|
||||
)
|
||||
return provider.supervised_fine_tune(**params)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
try:
|
||||
# get static list of models
|
||||
model = await self.register_helper.register_model(model)
|
||||
except ValueError:
|
||||
# if model is NOT in the list, its probably ok, but warn the user.
|
||||
#
|
||||
logger.warning(
|
||||
f"Model {model.identifier} is not in the model registry for this provider, there might be unexpected issues."
|
||||
)
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError("Model provider_resource_id cannot be None")
|
||||
provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id)
|
||||
if provider_resource_id is None:
|
||||
provider_resource_id = model.provider_resource_id
|
||||
model.provider_resource_id = provider_resource_id
|
||||
|
||||
return model
|
||||
|
||||
async def preference_optimize(
|
||||
self,
|
||||
job_uuid: str,
|
||||
finetuned_model: str,
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: dict[str, Any],
|
||||
logger_config: dict[str, Any],
|
||||
) -> PostTrainingJob:
|
||||
pass
|
||||
|
||||
async def get_training_jobs(self) -> ListPostTrainingJobsResponse:
|
||||
pass
|
||||
|
||||
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse | None:
|
||||
pass
|
||||
|
||||
async def cancel_training_job(self, job_uuid: str) -> None:
|
||||
pass
|
||||
|
||||
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse | None:
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue