feat: associated models API with post_training

there are likely scenarios where admins of a stack only want to allow clients to fine-tune certain models, register certain models to be fine-tuned. etc
introduce the post_training router and post_training_models as the associated type. A different model type needs to be used for inference vs post_training due to the structure of the router currently.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
Charlie Doern 2025-05-30 12:05:33 -04:00
parent 63a9f08c9e
commit 71caa271ad
11 changed files with 393 additions and 23 deletions

View file

@ -33,7 +33,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
assert obj.provider_id != "remote", "Remote provider should not be registered"
if api == Api.inference:
if api == Api.inference or api == Api.post_training:
return await p.register_model(obj)
elif api == Api.safety:
return await p.register_shield(obj)
@ -55,7 +55,7 @@ async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None:
api = get_impl_api(p)
if api == Api.vector_io:
return await p.unregister_vector_db(obj.identifier)
elif api == Api.inference:
elif api == Api.inference or api == Api.post_training:
return await p.unregister_model(obj.identifier)
elif api == Api.datasetio:
return await p.unregister_dataset(obj.identifier)
@ -89,11 +89,18 @@ class CommonRoutingTableImpl(RoutingTable):
obj = cls(**model_data)
await self.dist_registry.register(obj)
# Import routing table classes here to avoid circular imports
from .models import InferenceModelsRoutingTable
from .post_training_models import PostTrainingModelsRoutingTable
# Register all objects from providers
for pid, p in self.impls_by_provider_id.items():
api = get_impl_api(p)
if api == Api.inference:
p.model_store = self
if api == Api.inference or api == Api.post_training:
# For models, we need to handle both inference and post-training providers
if isinstance(self, InferenceModelsRoutingTable | PostTrainingModelsRoutingTable):
# Set the model store for both types of providers
p.model_store = self
elif api == Api.safety:
p.shield_store = self
elif api == Api.vector_io:
@ -116,15 +123,16 @@ class CommonRoutingTableImpl(RoutingTable):
def get_provider_impl(self, routing_key: str, provider_id: str | None = None) -> Any:
from .benchmarks import BenchmarksRoutingTable
from .datasets import DatasetsRoutingTable
from .models import ModelsRoutingTable
from .models import InferenceModelsRoutingTable
from .post_training_models import PostTrainingModelsRoutingTable
from .scoring_functions import ScoringFunctionsRoutingTable
from .shields import ShieldsRoutingTable
from .toolgroups import ToolGroupsRoutingTable
from .vector_dbs import VectorDBsRoutingTable
def apiname_object():
if isinstance(self, ModelsRoutingTable):
return ("Inference", "model")
if isinstance(self, InferenceModelsRoutingTable | PostTrainingModelsRoutingTable):
return ("Models", "model")
elif isinstance(self, ShieldsRoutingTable):
return ("Safety", "shield")
elif isinstance(self, VectorDBsRoutingTable):
@ -155,7 +163,25 @@ class CommonRoutingTableImpl(RoutingTable):
)
if not provider_id or provider_id == obj.provider_id:
return self.impls_by_provider_id[obj.provider_id]
provider = self.impls_by_provider_id[obj.provider_id]
# Check if the provider supports the requested API
if not hasattr(provider, "__provider_spec__"):
return provider
api = provider.__provider_spec__.api
# Only check API compatibility for model routing tables
if isinstance(self, InferenceModelsRoutingTable | PostTrainingModelsRoutingTable):
if api not in [Api.inference, Api.post_training]:
raise ValueError(f"Provider {obj.provider_id} does not support the requested API")
# If we have both inference and post-training providers, prefer inference for model registration
if api == Api.post_training and Api.inference in [
p.__provider_spec__.api for p in self.impls_by_provider_id.values()
]:
# Try to find an inference provider first
for _, p in self.impls_by_provider_id.items():
if hasattr(p, "__provider_spec__") and p.__provider_spec__.api == Api.inference:
return p
return provider
raise ValueError(f"Provider not found for `{routing_key}`")
@ -198,7 +224,6 @@ class CommonRoutingTableImpl(RoutingTable):
if obj.type == ResourceType.model.value:
await self.dist_registry.register(registered_obj)
return registered_obj
else:
await self.dist_registry.register(obj)
return obj

View file

@ -8,9 +8,8 @@ import time
from typing import Any
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
from llama_stack.distribution.datatypes import (
ModelWithACL,
)
from llama_stack.distribution.datatypes import ModelWithACL
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
@ -18,12 +17,37 @@ from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class ModelsRoutingTable(CommonRoutingTableImpl, Models):
class InferenceModelsRoutingTable(CommonRoutingTableImpl, Models):
"""Routing table for inference models."""
def __init__(
self,
impls_by_provider_id: dict[str, Any],
dist_registry: DistributionRegistry,
) -> None:
super().__init__(impls_by_provider_id, dist_registry)
self.post_training_models_table = None
async def initialize(self) -> None:
await super().initialize()
async def list_models(self) -> ListModelsResponse:
return ListModelsResponse(data=await self.get_all_with_type("model"))
"""List all inference models."""
models = await self.get_all_with_type("model")
if self.post_training_models_table:
post_training_models = await self.post_training_models_table.get_all_with_type("model")
# Create a set of existing model identifiers to avoid duplicates
existing_ids = {model.identifier for model in models}
# Only add models that don't already exist
models.extend([model for model in post_training_models if model.identifier not in existing_ids])
return ListModelsResponse(data=models)
async def openai_list_models(self) -> OpenAIListModelsResponse:
"""List all inference models in OpenAI format."""
models = await self.get_all_with_type("model")
if self.post_training_models_table:
post_training_models = await self.post_training_models_table.get_all_with_type("model")
models.extend(post_training_models)
openai_models = [
OpenAIModel(
id=model.identifier,
@ -36,7 +60,10 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
return OpenAIListModelsResponse(data=openai_models)
async def get_model(self, model_id: str) -> Model:
"""Get an inference model by ID."""
model = await self.get_object_by_identifier("model", model_id)
if model is None and self.post_training_models_table:
model = await self.post_training_models_table.get_object_by_identifier("model", model_id)
if model is None:
raise ValueError(f"Model '{model_id}' not found")
return model
@ -49,6 +76,7 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model:
"""Register an inference model with the routing table."""
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
@ -65,6 +93,25 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
# Check if the provider exists in either routing table
if provider_id not in self.impls_by_provider_id:
if self.post_training_models_table and provider_id in self.post_training_models_table.impls_by_provider_id:
# If provider exists in post-training table, use that instead
return await self.post_training_models_table.register_model(
model_id=model_id,
provider_model_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
model_type=model_type,
)
else:
# Get all available providers from both tables
available_providers = list(self.impls_by_provider_id.keys())
if self.post_training_models_table:
available_providers.extend(self.post_training_models_table.impls_by_provider_id.keys())
raise ValueError(f"Provider `{provider_id}` not found. Available providers: {available_providers}")
model = ModelWithACL(
identifier=model_id,
provider_resource_id=provider_model_id,
@ -76,7 +123,14 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
return registered_model
async def unregister_model(self, model_id: str) -> None:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
await self.unregister_object(existing_model)
"""Unregister an inference model from the routing table."""
try:
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Model {model_id} not found")
await self.unregister_object(existing_model)
except ValueError:
if self.post_training_models_table:
await self.post_training_models_table.unregister_model(model_id)
else:
raise

View file

@ -0,0 +1,99 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
from typing import Any
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel
from llama_stack.distribution.datatypes import ModelWithACL
from llama_stack.distribution.store import DistributionRegistry
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class PostTrainingModelsRoutingTable(CommonRoutingTableImpl, Models):
"""Routing table for post-training models."""
def __init__(
self,
impls_by_provider_id: dict[str, Any],
dist_registry: DistributionRegistry,
) -> None:
super().__init__(impls_by_provider_id, dist_registry)
async def initialize(self) -> None:
await super().initialize()
async def list_models(self) -> ListModelsResponse:
"""List all post-training models."""
models = await self.get_all_with_type("model")
return ListModelsResponse(data=models)
async def openai_list_models(self) -> OpenAIListModelsResponse:
"""List all post-training models in OpenAI format."""
models = await self.get_all_with_type("model")
openai_models = [
OpenAIModel(
id=model.identifier,
object="model",
created=int(time.time()),
owned_by="llama_stack",
)
for model in models
]
return OpenAIListModelsResponse(data=openai_models)
async def get_model(self, model_id: str) -> Model:
"""Get a post-training model by ID."""
model = await self.get_object_by_identifier("model", model_id)
if model is None:
raise ValueError(f"Post-training model '{model_id}' not found")
return model
async def register_model(
self,
model_id: str,
provider_model_id: str | None = None,
provider_id: str | None = None,
metadata: dict[str, Any] | None = None,
model_type: ModelType | None = None,
) -> Model:
"""Register a post-training model with the routing table."""
if provider_model_id is None:
provider_model_id = model_id
if provider_id is None:
# If provider_id not specified, use the only provider if it supports this model
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
f"No provider specified and multiple providers available. Please specify a provider_id. Available providers: {self.impls_by_provider_id.keys()}"
)
if metadata is None:
metadata = {}
if model_type is None:
model_type = ModelType.llm
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
raise ValueError("Embedding model must have an embedding dimension in its metadata")
model = ModelWithACL(
identifier=model_id,
provider_resource_id=provider_model_id,
provider_id=provider_id,
metadata=metadata,
model_type=model_type,
)
registered_model = await self.register_object(model)
return registered_model
async def unregister_model(self, model_id: str) -> None:
"""Unregister a post-training model from the routing table."""
existing_model = await self.get_model(model_id)
if existing_model is None:
raise ValueError(f"Post-training model {model_id} not found")
await self.unregister_object(existing_model)