chore: give OpenAIMixin subcalsses a change to list models without leaking _model_cache details (#3682)

# What does this PR do?

close the _model_cache abstraction leak

## Test Plan

ci w/ new tests
This commit is contained in:
Matthew Farrellee 2025-10-06 09:44:33 -04:00 committed by GitHub
parent f00bcd9561
commit 724dac498c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 164 additions and 39 deletions

View file

@ -4,16 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Iterable
from typing import Any
from databricks.sdk import WorkspaceClient
from llama_stack.apis.inference import (
Inference,
Model,
OpenAICompletion,
)
from llama_stack.apis.models import ModelType
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -72,31 +71,13 @@ class DatabricksInferenceAdapter(
) -> OpenAICompletion:
raise NotImplementedError()
async def list_models(self) -> list[Model] | None:
self._model_cache = {} # from OpenAIMixin
ws_client = WorkspaceClient(host=self.config.url, token=self.get_api_key()) # TODO: this is not async
endpoints = ws_client.serving_endpoints.list()
for endpoint in endpoints:
model = Model(
provider_id=self.__provider_id__,
provider_resource_id=endpoint.name,
identifier=endpoint.name,
)
if endpoint.task == "llm/v1/chat":
model.model_type = ModelType.llm # this is redundant, but informative
elif endpoint.task == "llm/v1/embeddings":
if endpoint.name not in self.embedding_model_metadata:
logger.warning(f"No metadata information available for embedding model {endpoint.name}, skipping.")
continue
model.model_type = ModelType.embedding
model.metadata = self.embedding_model_metadata[endpoint.name]
else:
logger.warning(f"Unknown model type, skipping: {endpoint}")
continue
self._model_cache[endpoint.name] = model
return list(self._model_cache.values())
async def list_provider_model_ids(self) -> Iterable[str]:
return [
endpoint.name
for endpoint in WorkspaceClient(
host=self.config.url, token=self.get_api_key()
).serving_endpoints.list() # TODO: this is not async
]
async def should_refresh_models(self) -> bool:
return False

View file

@ -7,7 +7,7 @@
import base64
import uuid
from abc import ABC, abstractmethod
from collections.abc import AsyncIterator
from collections.abc import AsyncIterator, Iterable
from typing import Any
from openai import NOT_GIVEN, AsyncOpenAI
@ -111,6 +111,18 @@ class OpenAIMixin(ModelsProtocolPrivate, NeedsRequestProviderData, ABC):
"""
return {}
async def list_provider_model_ids(self) -> Iterable[str]:
"""
List available models from the provider.
Child classes can override this method to provide a custom implementation
for listing models. The default implementation uses the AsyncOpenAI client
to list models from the OpenAI-compatible endpoint.
:return: An iterable of model IDs or None if not implemented
"""
return [m.id async for m in self.client.models.list()]
@property
def client(self) -> AsyncOpenAI:
"""
@ -387,28 +399,36 @@ class OpenAIMixin(ModelsProtocolPrivate, NeedsRequestProviderData, ABC):
"""
self._model_cache = {}
async for m in self.client.models.list():
if self.allowed_models and m.id not in self.allowed_models:
logger.info(f"Skipping model {m.id} as it is not in the allowed models list")
# give subclasses a chance to provide custom model listing
iterable = await self.list_provider_model_ids()
if not hasattr(iterable, "__iter__"):
raise TypeError(
f"Failed to list models: {self.__class__.__name__}.list_provider_model_ids() must return an iterable of "
f"strings or None, but returned {type(iterable).__name__}"
)
provider_models_ids = list(iterable)
logger.info(f"{self.__class__.__name__}.list_provider_model_ids() returned {len(provider_models_ids)} models")
for provider_model_id in provider_models_ids:
if self.allowed_models and provider_model_id not in self.allowed_models:
logger.info(f"Skipping model {provider_model_id} as it is not in the allowed models list")
continue
if metadata := self.embedding_model_metadata.get(m.id):
# This is an embedding model - augment with metadata
if metadata := self.embedding_model_metadata.get(provider_model_id):
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=m.id,
identifier=m.id,
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.embedding,
metadata=metadata,
)
else:
# This is an LLM
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=m.id,
identifier=m.id,
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.llm,
)
self._model_cache[m.id] = model
self._model_cache[provider_model_id] = model
return list(self._model_cache.values())

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import json
from collections.abc import Iterable
from unittest.mock import AsyncMock, MagicMock, Mock, PropertyMock, patch
import pytest
@ -498,6 +499,129 @@ class OpenAIMixinWithProviderData(OpenAIMixinImpl):
return "default-base-url"
class CustomListProviderModelIdsImplementation(OpenAIMixinImpl):
"""Test implementation with custom list_provider_model_ids override"""
def __init__(self, custom_model_ids):
self._custom_model_ids = custom_model_ids
async def list_provider_model_ids(self) -> Iterable[str]:
"""Return custom model IDs list"""
return self._custom_model_ids
class TestOpenAIMixinCustomListProviderModelIds:
"""Test cases for custom list_provider_model_ids() implementation functionality"""
@pytest.fixture
def custom_model_ids_list(self):
"""Create a list of custom model ID strings"""
return ["custom-model-1", "custom-model-2", "custom-embedding"]
@pytest.fixture
def adapter(self, custom_model_ids_list):
"""Create mixin instance with custom list_provider_model_ids implementation"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=custom_model_ids_list)
mixin.embedding_model_metadata = {"custom-embedding": {"embedding_dimension": 768, "context_length": 512}}
return mixin
async def test_is_used(self, adapter, custom_model_ids_list):
"""Test that custom list_provider_model_ids() implementation is used instead of client.models.list()"""
result = await adapter.list_models()
assert result is not None
assert len(result) == 3
assert set(custom_model_ids_list) == {m.identifier for m in result}
async def test_populates_cache(self, adapter, custom_model_ids_list):
"""Test that custom list_provider_model_ids() results are cached"""
assert len(adapter._model_cache) == 0
await adapter.list_models()
assert set(custom_model_ids_list) == set(adapter._model_cache.keys())
async def test_respects_allowed_models(self):
"""Test that custom list_provider_model_ids() respects allowed_models filtering"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=["model-1", "model-2", "model-3"])
mixin.allowed_models = ["model-1"]
result = await mixin.list_models()
assert result is not None
assert len(result) == 1
assert result[0].identifier == "model-1"
async def test_with_empty_list(self):
"""Test that custom list_provider_model_ids() handles empty list correctly"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=[])
result = await mixin.list_models()
assert result is not None
assert len(result) == 0
assert len(mixin._model_cache) == 0
async def test_wrong_type_raises_error(self):
"""Test that list_provider_model_ids() returning unhashable items results in an error"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=[["nested", "list"], {"key": "value"}])
with pytest.raises(TypeError, match="unhashable type"):
await mixin.list_models()
async def test_non_iterable_raises_error(self):
"""Test that list_provider_model_ids() returning non-iterable type raises error"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=42)
with pytest.raises(
TypeError,
match=r"Failed to list models: CustomListProviderModelIdsImplementation\.list_provider_model_ids\(\) must return an iterable.*but returned int",
):
await mixin.list_models()
async def test_with_none_items_raises_error(self):
"""Test that list_provider_model_ids() returning list with None items causes error"""
mixin = CustomListProviderModelIdsImplementation(custom_model_ids=[None, "valid-model", None])
with pytest.raises(Exception, match="Input should be a valid string"):
await mixin.list_models()
async def test_accepts_various_iterables(self):
"""Test that list_provider_model_ids() accepts tuples, sets, generators, etc."""
class TupleAdapter(OpenAIMixinImpl):
async def list_provider_model_ids(self) -> Iterable[str] | None:
return ("model-1", "model-2", "model-3")
mixin = TupleAdapter()
result = await mixin.list_models()
assert result is not None
assert len(result) == 3
class GeneratorAdapter(OpenAIMixinImpl):
async def list_provider_model_ids(self) -> Iterable[str] | None:
def gen():
yield "gen-model-1"
yield "gen-model-2"
return gen()
mixin = GeneratorAdapter()
result = await mixin.list_models()
assert result is not None
assert len(result) == 2
class SetAdapter(OpenAIMixinImpl):
async def list_provider_model_ids(self) -> Iterable[str] | None:
return {"set-model-1", "set-model-2"}
mixin = SetAdapter()
result = await mixin.list_models()
assert result is not None
assert len(result) == 2
class TestOpenAIMixinProviderDataApiKey:
"""Test cases for provider_data_api_key_field functionality"""