mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
feat: Enable ingestion of custom embeddings
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
2603f10f95
commit
73456878e5
8 changed files with 224 additions and 15 deletions
34
docs/_static/llama-stack-spec.html
vendored
34
docs/_static/llama-stack-spec.html
vendored
|
@ -10020,7 +10020,8 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The content of the chunk, which can be interleaved text, images, or other types."
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
|
@ -10045,7 +10046,15 @@
|
|||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"description": "Metadata associated with the chunk, such as document ID, source, or other relevant information."
|
||||
},
|
||||
"embedding": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "number"
|
||||
},
|
||||
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -10053,9 +10062,10 @@
|
|||
"content",
|
||||
"metadata"
|
||||
],
|
||||
"title": "Chunk"
|
||||
"title": "Chunk",
|
||||
"description": "A chunk of content that can be inserted into a vector database."
|
||||
},
|
||||
"description": "The chunks to insert."
|
||||
"description": "The chunks to insert. Each `Chunk` should contain content which can be interleaved text, images, or other types. `metadata`: `dict[str, Any]` and `embedding`: `List[float]` are optional. If `metadata` is provided, you configure how Llama Stack formats the chunk during generation. If `embedding` is not provided, it will be computed later."
|
||||
},
|
||||
"ttl_seconds": {
|
||||
"type": "integer",
|
||||
|
@ -12285,7 +12295,8 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"content": {
|
||||
"$ref": "#/components/schemas/InterleavedContent"
|
||||
"$ref": "#/components/schemas/InterleavedContent",
|
||||
"description": "The content of the chunk, which can be interleaved text, images, or other types."
|
||||
},
|
||||
"metadata": {
|
||||
"type": "object",
|
||||
|
@ -12310,7 +12321,15 @@
|
|||
"type": "object"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"description": "Metadata associated with the chunk, such as document ID, source, or other relevant information."
|
||||
},
|
||||
"embedding": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "number"
|
||||
},
|
||||
"description": "Optional embedding for the chunk. If not provided, it will be computed later."
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -12318,7 +12337,8 @@
|
|||
"content",
|
||||
"metadata"
|
||||
],
|
||||
"title": "Chunk"
|
||||
"title": "Chunk",
|
||||
"description": "A chunk of content that can be inserted into a vector database."
|
||||
}
|
||||
},
|
||||
"scores": {
|
||||
|
|
37
docs/_static/llama-stack-spec.yaml
vendored
37
docs/_static/llama-stack-spec.yaml
vendored
|
@ -7024,6 +7024,9 @@ components:
|
|||
properties:
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
The content of the chunk, which can be interleaved text, images,
|
||||
or other types.
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
|
@ -7034,12 +7037,29 @@ components:
|
|||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Metadata associated with the chunk, such as document ID, source,
|
||||
or other relevant information.
|
||||
embedding:
|
||||
type: array
|
||||
items:
|
||||
type: number
|
||||
description: >-
|
||||
Optional embedding for the chunk. If not provided, it will be computed
|
||||
later.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- content
|
||||
- metadata
|
||||
title: Chunk
|
||||
description: The chunks to insert.
|
||||
description: >-
|
||||
A chunk of content that can be inserted into a vector database.
|
||||
description: >-
|
||||
The chunks to insert. Each `Chunk` should contain content which can be
|
||||
interleaved text, images, or other types. `metadata`: `dict[str, Any]`
|
||||
and `embedding`: `List[float]` are optional. If `metadata` is provided,
|
||||
you configure how Llama Stack formats the chunk during generation. If
|
||||
`embedding` is not provided, it will be computed later.
|
||||
ttl_seconds:
|
||||
type: integer
|
||||
description: The time to live of the chunks.
|
||||
|
@ -8537,6 +8557,9 @@ components:
|
|||
properties:
|
||||
content:
|
||||
$ref: '#/components/schemas/InterleavedContent'
|
||||
description: >-
|
||||
The content of the chunk, which can be interleaved text, images,
|
||||
or other types.
|
||||
metadata:
|
||||
type: object
|
||||
additionalProperties:
|
||||
|
@ -8547,11 +8570,23 @@ components:
|
|||
- type: string
|
||||
- type: array
|
||||
- type: object
|
||||
description: >-
|
||||
Metadata associated with the chunk, such as document ID, source,
|
||||
or other relevant information.
|
||||
embedding:
|
||||
type: array
|
||||
items:
|
||||
type: number
|
||||
description: >-
|
||||
Optional embedding for the chunk. If not provided, it will be computed
|
||||
later.
|
||||
additionalProperties: false
|
||||
required:
|
||||
- content
|
||||
- metadata
|
||||
title: Chunk
|
||||
description: >-
|
||||
A chunk of content that can be inserted into a vector database.
|
||||
scores:
|
||||
type: array
|
||||
items:
|
||||
|
|
|
@ -57,6 +57,31 @@ chunks = [
|
|||
]
|
||||
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)
|
||||
```
|
||||
|
||||
#### Using Precomputed Embeddings
|
||||
If you decide to precompute embeddings for your documents, you can insert them directly into the vector database by
|
||||
including the embedding vectors in the chunk data. This is useful if you have a separate embedding service or if you
|
||||
want to customize the ingestion process.
|
||||
```python
|
||||
chunks_with_embeddings = [
|
||||
{
|
||||
"content": "First chunk of text",
|
||||
"mime_type": "text/plain",
|
||||
"embedding": [0.1, 0.2, 0.3, ...], # Your precomputed embedding vector
|
||||
"metadata": {"document_id": "doc1", "section": "introduction"},
|
||||
},
|
||||
{
|
||||
"content": "Second chunk of text",
|
||||
"mime_type": "text/plain",
|
||||
"embedding": [0.2, 0.3, 0.4, ...], # Your precomputed embedding vector
|
||||
"metadata": {"document_id": "doc1", "section": "methodology"},
|
||||
},
|
||||
]
|
||||
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks_with_embeddings)
|
||||
```
|
||||
When providing precomputed embeddings, ensure the embedding dimension matches the embedding_dimension specified when
|
||||
registering the vector database.
|
||||
|
||||
### Retrieval
|
||||
You can query the vector database to retrieve documents based on their embeddings.
|
||||
```python
|
||||
|
|
|
@ -19,8 +19,16 @@ from llama_stack.schema_utils import json_schema_type, webmethod
|
|||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
"""
|
||||
A chunk of content that can be inserted into a vector database.
|
||||
:param content: The content of the chunk, which can be interleaved text, images, or other types.
|
||||
:param embedding: Optional embedding for the chunk. If not provided, it will be computed later.
|
||||
:param metadata: Metadata associated with the chunk, such as document ID, source, or other relevant information.
|
||||
"""
|
||||
|
||||
content: InterleavedContent
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
embedding: list[float] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -50,7 +58,10 @@ class VectorIO(Protocol):
|
|||
"""Insert chunks into a vector database.
|
||||
|
||||
:param vector_db_id: The identifier of the vector database to insert the chunks into.
|
||||
:param chunks: The chunks to insert.
|
||||
:param chunks: The chunks to insert. Each `Chunk` should contain content which can be interleaved text, images, or other types.
|
||||
`metadata`: `dict[str, Any]` and `embedding`: `List[float]` are optional.
|
||||
If `metadata` is provided, you configure how Llama Stack formats the chunk during generation.
|
||||
If `embedding` is not provided, it will be computed later.
|
||||
:param ttl_seconds: The time to live of the chunks.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -146,7 +146,7 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
|
|||
]
|
||||
for i, chunk in enumerate(chunks):
|
||||
metadata = chunk.metadata
|
||||
tokens += metadata["token_count"]
|
||||
tokens += metadata.get("token_count", 0)
|
||||
tokens += metadata.get("metadata_token_count", 0)
|
||||
|
||||
if tokens > query_config.max_tokens_in_context:
|
||||
|
|
|
@ -199,11 +199,16 @@ class VectorDBWithIndex:
|
|||
self,
|
||||
chunks: list[Chunk],
|
||||
) -> None:
|
||||
embeddings_response = await self.inference_api.embeddings(
|
||||
self.vector_db.embedding_model, [x.content for x in chunks]
|
||||
)
|
||||
embeddings = np.array(embeddings_response.embeddings)
|
||||
chunks_to_embed = [c for c in chunks if c.embedding is None]
|
||||
if chunks_to_embed:
|
||||
resp = await self.inference_api.embeddings(
|
||||
self.vector_db.embedding_model,
|
||||
[c.content for c in chunks_to_embed],
|
||||
)
|
||||
for c, embedding in zip(chunks_to_embed, resp.embeddings, strict=False):
|
||||
c.embedding = embedding
|
||||
|
||||
embeddings = np.array([c.embedding for c in chunks], dtype=np.float32)
|
||||
await self.index.add_chunks(chunks, embeddings)
|
||||
|
||||
async def query_chunks(
|
||||
|
|
|
@ -120,3 +120,37 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, sample_ch
|
|||
top_match = response.chunks[0]
|
||||
assert top_match is not None
|
||||
assert top_match.metadata["document_id"] == expected_doc_id, f"Query '{query}' should match {expected_doc_id}"
|
||||
|
||||
|
||||
def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, embedding_model_id):
|
||||
vector_db_id = "test_precomputed_embeddings_db"
|
||||
client_with_empty_registry.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model=embedding_model_id,
|
||||
embedding_dimension=384,
|
||||
)
|
||||
|
||||
chunks_with_embeddings = [
|
||||
Chunk(
|
||||
content="This is a test chunk with precomputed embedding.",
|
||||
metadata={"document_id": "doc1", "source": "precomputed"},
|
||||
embedding=[0.1] * 384,
|
||||
),
|
||||
]
|
||||
|
||||
client_with_empty_registry.vector_io.insert(
|
||||
vector_db_id=vector_db_id,
|
||||
chunks=chunks_with_embeddings,
|
||||
)
|
||||
|
||||
# Query for the first document
|
||||
response = client_with_empty_registry.vector_io.query(
|
||||
vector_db_id=vector_db_id,
|
||||
query="precomputed embedding test",
|
||||
)
|
||||
|
||||
# Verify the top result is the expected document
|
||||
assert response is not None
|
||||
assert len(response.chunks) > 0
|
||||
assert response.chunks[0].metadata["document_id"] == "doc1"
|
||||
assert response.chunks[0].metadata["source"] == "precomputed"
|
||||
|
|
|
@ -8,11 +8,19 @@ import base64
|
|||
import mimetypes
|
||||
import os
|
||||
from pathlib import Path
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.tools import RAGDocument
|
||||
from llama_stack.providers.utils.memory.vector_store import URL, content_from_doc, make_overlapped_chunks
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
URL,
|
||||
VectorDBWithIndex,
|
||||
content_from_doc,
|
||||
make_overlapped_chunks,
|
||||
)
|
||||
|
||||
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"
|
||||
# Depending on the machine, this can get parsed a couple of ways
|
||||
|
@ -36,6 +44,25 @@ def data_url_from_file(file_path: str) -> str:
|
|||
return data_url
|
||||
|
||||
|
||||
class TestChunk:
|
||||
def test_chunk(self):
|
||||
chunk = Chunk(
|
||||
content="Example chunk content",
|
||||
metadata={"key": "value"},
|
||||
embedding=[0.1, 0.2, 0.3],
|
||||
)
|
||||
|
||||
assert chunk.content == "Example chunk content"
|
||||
assert chunk.metadata == {"key": "value"}
|
||||
assert chunk.embedding == [0.1, 0.2, 0.3]
|
||||
|
||||
chunk_no_embedding = Chunk(
|
||||
content="Example chunk content",
|
||||
metadata={"key": "value"},
|
||||
)
|
||||
assert chunk_no_embedding.embedding is None
|
||||
|
||||
|
||||
class TestVectorStore:
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_content_from_pdf_data_uri(self):
|
||||
|
@ -126,3 +153,55 @@ class TestVectorStore:
|
|||
assert str(excinfo.value) == "Failed to serialize metadata to string"
|
||||
assert isinstance(excinfo.value.__cause__, TypeError)
|
||||
assert str(excinfo.value.__cause__) == "Cannot convert to string"
|
||||
|
||||
|
||||
class TestVectorDBWithIndex:
|
||||
@pytest.mark.asyncio
|
||||
async def test_insert_chunks_without_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_model = "test-model without embeddings"
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
chunks = [
|
||||
Chunk(content="Test 1", embedding=None, metadata={}),
|
||||
Chunk(content="Test 2", embedding=None, metadata={}),
|
||||
]
|
||||
|
||||
mock_inference_api.embeddings.return_value.embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
|
||||
|
||||
await vector_db_with_index.insert_chunks(chunks)
|
||||
|
||||
mock_inference_api.embeddings.assert_called_once_with("test-model without embeddings", ["Test 1", "Test 2"])
|
||||
mock_index.add_chunks.assert_called_once()
|
||||
args = mock_index.add_chunks.call_args[0]
|
||||
assert args[0] == chunks
|
||||
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_insert_chunks_with_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_model = "test-model with embeddings"
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
chunks = [
|
||||
Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3], metadata={}),
|
||||
Chunk(content="Test 2", embedding=[0.4, 0.5, 0.6], metadata={}),
|
||||
]
|
||||
|
||||
await vector_db_with_index.insert_chunks(chunks)
|
||||
|
||||
mock_inference_api.embeddings.assert_not_called()
|
||||
mock_index.add_chunks.assert_called_once()
|
||||
args = mock_index.add_chunks.call_args[0]
|
||||
assert args[0] == chunks
|
||||
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue