mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 23:03:49 +00:00
evals with generation
This commit is contained in:
parent
071dba8871
commit
737fcb795f
15 changed files with 385 additions and 15 deletions
79
llama_stack/providers/tests/eval/test_eval.py
Normal file
79
llama_stack/providers/tests/eval/test_eval.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
from llama_stack.apis.eval.eval import ModelCandidate
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
from llama_models.llama3.api import SamplingParams
|
||||
|
||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
||||
# since it depends on the provider you are testing. On top of that you need
|
||||
# `pytest` and `pytest-asyncio` installed.
|
||||
#
|
||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
||||
#
|
||||
# 3. Run:
|
||||
#
|
||||
# ```bash
|
||||
# PROVIDER_ID=<your_provider> \
|
||||
# PROVIDER_CONFIG=provider_config.yaml \
|
||||
# pytest -s llama_stack/providers/tests/eval/test_eval.py \
|
||||
# --tb=short --disable-warnings
|
||||
# ```
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def eval_settings():
|
||||
impls = await resolve_impls_for_test(
|
||||
Api.eval, deps=[Api.datasetio, Api.scoring, Api.inference]
|
||||
)
|
||||
return {
|
||||
"eval_impl": impls[Api.eval],
|
||||
"scoring_impl": impls[Api.scoring],
|
||||
"datasets_impl": impls[Api.datasets],
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval(eval_settings):
|
||||
datasets_impl = eval_settings["datasets_impl"]
|
||||
await register_dataset(
|
||||
datasets_impl,
|
||||
include_generated_answer=False,
|
||||
dataset_id="test_dataset_for_eval",
|
||||
)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) == 1
|
||||
|
||||
eval_impl = eval_settings["eval_impl"]
|
||||
response = await eval_impl.evaluate_batch(
|
||||
dataset_id=response[0].identifier,
|
||||
candidate=ModelCandidate(
|
||||
model="Llama3.1-8B-Instruct",
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
scoring_functions=["inclusion"],
|
||||
)
|
||||
assert response.job_id == "0"
|
||||
job_status = await eval_impl.job_status(response.job_id)
|
||||
|
||||
assert job_status.value == "completed"
|
||||
|
||||
eval_response = await eval_impl.job_result(response.job_id)
|
||||
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 5
|
||||
assert "inclusion" in eval_response.scores
|
Loading…
Add table
Add a link
Reference in a new issue