add groq inference provider

This commit is contained in:
Benjamin Klieger 2024-11-25 17:54:14 -08:00
parent 34be07e0df
commit 74a6aa2c81
6 changed files with 480 additions and 0 deletions

View file

@ -54,6 +54,33 @@
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"groq": [
"aiosqlite",
"blobfile",
"chardet",
"chromadb-client",
"faiss-cpu",
"fastapi",
"fire",
"httpx",
"matplotlib",
"nltk",
"numpy",
"pandas",
"pillow",
"psycopg2-binary",
"pypdf",
"redis",
"scikit-learn",
"scipy",
"sentencepiece",
"openai",
"tqdm",
"transformers",
"uvicorn",
"sentence-transformers --no-deps",
"torch --index-url https://download.pytorch.org/whl/cpu"
],
"vllm-gpu": [
"aiosqlite",
"blobfile",

View file

@ -130,6 +130,18 @@ def available_providers() -> List[ProviderSpec]:
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq",
pip_packages=[
"groq",
],
module="llama_stack.providers.remote.inference.groq",
config_class="llama_stack.providers.remote.inference.groq.GroqImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq.GroqProviderDataValidator",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(

View file

@ -0,0 +1,24 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from .config import GroqImplConfig
class GroqProviderDataValidator(BaseModel):
groq_api_key: str
async def get_adapter_impl(config: GroqImplConfig, _deps):
from .groq import GroqInferenceAdapter
assert isinstance(
config, GroqImplConfig
), f"Unexpected config type: {type(config)}"
impl = GroqInferenceAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@json_schema_type
class GroqImplConfig(BaseModel):
url: str = Field(
default="https://api.groq.com/openai/v1/",
description="The URL for the Groq server",
)
api_key: Optional[str] = Field(
default=None,
description="The Groq API Key",
)
@classmethod
def sample_run_config(cls, __distro_dir__: str = '') -> Dict[str, Any]:
return {
"url": "https://api.groq.com/openai/v1/",
"api_key": "${env.GROQ_API_KEY}",
}

View file

@ -0,0 +1,371 @@
from typing import AsyncGenerator
from openai import OpenAI
import json
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
request_has_media,
)
from .config import GroqImplConfig
MODEL_ALIASES = [
build_model_alias(
"llama-3.1-8b-instant",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"llama-3.1-70b-versatile",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"llama-3.2-1b-preview",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"llama-3.2-3b-preview",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"llama-3.2-11b-vision-preview",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
"llama-3.2-90b-vision-preview",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"llama-guard-3-8b",
CoreModelId.llama_guard_3_8b.value,
),
]
class GroqInferenceAdapter(
ModelRegistryHelper, Inference, NeedsRequestProviderData
):
def __init__(self, config: GroqImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def _get_client(self) -> OpenAI:
groq_api_key = None
if self.config.api_key is not None:
groq_api_key = self.config.api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.groq_api_key:
raise ValueError(
'Pass Groq API Key in the header X-LlamaStack-ProviderData as { "groq_api_key": <your api key> }'
)
groq_api_key = provider_data.groq_api_key
return OpenAI(base_url="https://api.groq.com/openai/v1", api_key=groq_api_key)
async def completion(
self,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError(
"Groq does not support text completion. See chat completion in the documentation instead: https://console.groq.com/docs/api-reference#chat-create"
)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = await self._get_params(request)
r = self._get_client().chat.completions.create(**params)
return self._process_chat_completion_response(r)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
params = await self._get_params(request)
raw_stream = self._get_client().chat.completions.create(**params)
async for stream_chunk in self._process_chat_completion_stream_response(raw_stream):
yield stream_chunk
async def _get_params(
self, request: ChatCompletionRequest
) -> dict:
params = {
"model": request.model,
"stream": request.stream,
}
# Process messages
params["messages"] = [
{
"role": m.role,
"content": m.content,
}
for m in request.messages
]
# Build options
options = self._build_options(
request.sampling_params, request.response_format, request.logprobs
)
params.update(options)
# Handle tools and tool_choice
if request.tools:
params["tools"] = []
for tool in request.tools:
# Convert the ToolDefinition into the desired format
params["tools"].append({
"type": "function",
"function": {
"name": str(tool.tool_name.value if hasattr(tool.tool_name, 'value') else tool.tool_name),
"description": tool.description,
"parameters": {
"type": "object",
"properties": {
param_name: {
"type": param.param_type,
"description": param.description,
}
for param_name, param in tool.parameters.items()
},
"required": [
param_name
for param_name, param in tool.parameters.items()
if param.required
],
},
},
})
if request.tool_choice:
params["tool_choice"] = request.tool_choice.value
return params
def _build_options(
self,
sampling_params: Optional[SamplingParams],
fmt: Optional[ResponseFormat],
logprobs: Optional[LogProbConfig],
) -> dict:
options = {}
if sampling_params:
if sampling_params.temperature is not None:
options["temperature"] = sampling_params.temperature
if sampling_params.max_tokens and sampling_params.max_tokens > 0:
options["max_tokens"] = sampling_params.max_tokens
if sampling_params.top_p is not None:
options["top_p"] = sampling_params.top_p
# The following parameters are not supported by Groq API
# if sampling_params.top_k is not None:
# options["top_k"] = sampling_params.top_k
# if sampling_params.repetition_penalty is not None:
# options["repetition_penalty"] = sampling_params.repetition_penalty
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
if logprobs:
if logprobs.top_k is not None and logprobs.top_k > 0:
options["logprobs"] = True
options["top_logprobs"] = logprobs.top_k
else:
options["logprobs"] = False
return options
def _process_chat_completion_response(self, response):
# Ensure response is an object with a `choices` attribute
if not hasattr(response, 'choices') or not isinstance(response.choices, list):
raise ValueError("Invalid response format: 'choices' attribute is missing or not a list.")
first_choice = response.choices[0]
# Ensure the first choice has a valid `message` field
if not hasattr(first_choice, 'message') or not first_choice.message:
raise ValueError("Invalid response format: 'message' field is missing in the first choice.")
tool_calls = []
for tool_call in (first_choice.message.tool_calls or []):
arguments = getattr(tool_call.function, 'arguments', {})
if isinstance(arguments, str):
arguments = json.loads(arguments)
# Append transformed ToolCall
tool_calls.append(ToolCall(
call_id=getattr(tool_call, 'id', 'unknown_call_id'),
tool_name=getattr(tool_call.function, 'name', 'unknown_tool'),
arguments=arguments
))
content = first_choice.message.content
if content is None:
content = "" # Provide a default empty string
finish_reason = {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(getattr(first_choice, 'finish_reason', None), StopReason.end_of_turn)
completion_message = CompletionMessage(
role=first_choice.message.role,
content=content,
stop_reason=finish_reason,
tool_calls=tool_calls,
)
return ChatCompletionResponse(
completion_message=completion_message,
logprobs=None # Groq does not provide logprobs currently. See reference for latest: https://console.groq.com/docs/api-reference#chat-create
)
def _convert_chunk_to_stream_chunk(self, chunk):
if not chunk.choices or len(chunk.choices) == 0:
return None
choice = chunk.choices[0]
delta = choice.delta
# Handle tool calls in full form directly
tool_calls = []
if delta.tool_calls:
for tool_call in delta.tool_calls:
arguments = tool_call.function.arguments
if isinstance(arguments, str):
arguments = json.loads(arguments)
# Append transformed ToolCall
tool_calls.append(ToolCall(
call_id=tool_call.id,
tool_name=tool_call.function.name,
arguments=arguments
))
# Determine event type
if choice.finish_reason == 'stop' or choice.finish_reason == 'tool_calls':
event_type = ChatCompletionResponseEventType.complete
elif delta and delta.role == 'assistant' and not delta.content:
event_type = ChatCompletionResponseEventType.start
else:
event_type = ChatCompletionResponseEventType.progress
# Handle delta content
if delta.content is not None:
event_delta = delta.content
elif tool_calls:
# Construct ToolCallDelta if tool calls exist
event_delta = ToolCallDelta(
content=tool_calls[0], # Tools currently come once per chunk, and thus, we can sample the first tool as there will not be more than one here.
parse_status=ToolCallParseStatus("success") # Groq currently only returns tool calls in one chunk. If a tool call is there, it is complete and has success status.
)
elif choice.finish_reason == 'stop':
# For 'stop' events with no content, set delta to empty string
event_delta = ""
else:
# For non-stop events with no content, set delta to empty string
event_delta = ""
finish_reason = {
"stop": StopReason.end_of_turn,
"length": StopReason.out_of_tokens,
"tool_calls": StopReason.end_of_message,
}.get(choice.finish_reason, StopReason.end_of_turn)
# Construct the event
event = ChatCompletionResponseEvent(
event_type=event_type,
delta=event_delta,
stop_reason=finish_reason,
logprobs=choice.logprobs,
)
# Create the stream chunk
stream_chunk = ChatCompletionResponseStreamChunk(event=event)
return stream_chunk
async def _process_chat_completion_stream_response(self, stream):
if hasattr(stream, "__aiter__"):
# Consume as an async iterable
async for chunk in stream:
stream_chunk = self._convert_chunk_to_stream_chunk(chunk)
if stream_chunk:
yield stream_chunk
elif hasattr(stream, "__iter__"):
# Wrap sync iterable in an async generator
for chunk in stream:
stream_chunk = self._convert_chunk_to_stream_chunk(chunk)
if stream_chunk:
yield stream_chunk
else:
raise TypeError(f"'stream' object is not iterable: {type(stream)}")
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -18,6 +18,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
from llama_stack.providers.remote.inference.groq import GroqImplConfig
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
from llama_stack.providers.remote.inference.together import TogetherImplConfig
@ -114,6 +115,21 @@ def inference_fireworks() -> ProviderFixture:
)
@pytest.fixture(scope="session")
def inference_groq() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="groq",
provider_type="remote::groq",
config=GroqImplConfig(
api_key=get_env_or_fail("GROQ_API_KEY"),
).model_dump(),
)
],
)
@pytest.fixture(scope="session")
def inference_together() -> ProviderFixture:
return ProviderFixture(
@ -190,6 +206,7 @@ INFERENCE_FIXTURES = [
"remote",
"bedrock",
"nvidia",
"groq",
]