mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-16 23:52:36 +00:00
add groq inference provider
This commit is contained in:
parent
34be07e0df
commit
74a6aa2c81
6 changed files with 480 additions and 0 deletions
|
|
@ -54,6 +54,33 @@
|
|||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"groq": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pypdf",
|
||||
"redis",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"openai",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
"sentence-transformers --no-deps",
|
||||
"torch --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"vllm-gpu": [
|
||||
"aiosqlite",
|
||||
"blobfile",
|
||||
|
|
|
|||
|
|
@ -130,6 +130,18 @@ def available_providers() -> List[ProviderSpec]:
|
|||
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="groq",
|
||||
pip_packages=[
|
||||
"groq",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.groq",
|
||||
config_class="llama_stack.providers.remote.inference.groq.GroqImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.groq.GroqProviderDataValidator",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
|
|||
24
llama_stack/providers/remote/inference/groq/__init__.py
Normal file
24
llama_stack/providers/remote/inference/groq/__init__.py
Normal file
|
|
@ -0,0 +1,24 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import GroqImplConfig
|
||||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: str
|
||||
|
||||
|
||||
async def get_adapter_impl(config: GroqImplConfig, _deps):
|
||||
from .groq import GroqInferenceAdapter
|
||||
|
||||
assert isinstance(
|
||||
config, GroqImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = GroqInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
29
llama_stack/providers/remote/inference/groq/config.py
Normal file
29
llama_stack/providers/remote/inference/groq/config.py
Normal file
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GroqImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.groq.com/openai/v1/",
|
||||
description="The URL for the Groq server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Groq API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str = '') -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.groq.com/openai/v1/",
|
||||
"api_key": "${env.GROQ_API_KEY}",
|
||||
}
|
||||
371
llama_stack/providers/remote/inference/groq/groq.py
Normal file
371
llama_stack/providers/remote/inference/groq/groq.py
Normal file
|
|
@ -0,0 +1,371 @@
|
|||
from typing import AsyncGenerator
|
||||
|
||||
from openai import OpenAI
|
||||
import json
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
request_has_media,
|
||||
)
|
||||
from .config import GroqImplConfig
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"llama-3.1-8b-instant",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.1-70b-versatile",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-1b-preview",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-3b-preview",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-11b-vision-preview",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-3.2-90b-vision-preview",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama-guard-3-8b",
|
||||
CoreModelId.llama_guard_3_8b.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class GroqInferenceAdapter(
|
||||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
def __init__(self, config: GroqImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> OpenAI:
|
||||
groq_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
groq_api_key = self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.groq_api_key:
|
||||
raise ValueError(
|
||||
'Pass Groq API Key in the header X-LlamaStack-ProviderData as { "groq_api_key": <your api key> }'
|
||||
)
|
||||
groq_api_key = provider_data.groq_api_key
|
||||
return OpenAI(base_url="https://api.groq.com/openai/v1", api_key=groq_api_key)
|
||||
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError(
|
||||
"Groq does not support text completion. See chat completion in the documentation instead: https://console.groq.com/docs/api-reference#chat-create"
|
||||
)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client().chat.completions.create(**params)
|
||||
return self._process_chat_completion_response(r)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
params = await self._get_params(request)
|
||||
|
||||
raw_stream = self._get_client().chat.completions.create(**params)
|
||||
|
||||
async for stream_chunk in self._process_chat_completion_stream_response(raw_stream):
|
||||
yield stream_chunk
|
||||
|
||||
|
||||
async def _get_params(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> dict:
|
||||
params = {
|
||||
"model": request.model,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
# Process messages
|
||||
params["messages"] = [
|
||||
{
|
||||
"role": m.role,
|
||||
"content": m.content,
|
||||
}
|
||||
for m in request.messages
|
||||
]
|
||||
|
||||
# Build options
|
||||
options = self._build_options(
|
||||
request.sampling_params, request.response_format, request.logprobs
|
||||
)
|
||||
params.update(options)
|
||||
|
||||
# Handle tools and tool_choice
|
||||
if request.tools:
|
||||
params["tools"] = []
|
||||
for tool in request.tools:
|
||||
# Convert the ToolDefinition into the desired format
|
||||
params["tools"].append({
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": str(tool.tool_name.value if hasattr(tool.tool_name, 'value') else tool.tool_name),
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param_name: {
|
||||
"type": param.param_type,
|
||||
"description": param.description,
|
||||
}
|
||||
for param_name, param in tool.parameters.items()
|
||||
},
|
||||
"required": [
|
||||
param_name
|
||||
for param_name, param in tool.parameters.items()
|
||||
if param.required
|
||||
],
|
||||
},
|
||||
},
|
||||
})
|
||||
|
||||
if request.tool_choice:
|
||||
params["tool_choice"] = request.tool_choice.value
|
||||
|
||||
return params
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: Optional[SamplingParams],
|
||||
fmt: Optional[ResponseFormat],
|
||||
logprobs: Optional[LogProbConfig],
|
||||
) -> dict:
|
||||
options = {}
|
||||
if sampling_params:
|
||||
if sampling_params.temperature is not None:
|
||||
options["temperature"] = sampling_params.temperature
|
||||
if sampling_params.max_tokens and sampling_params.max_tokens > 0:
|
||||
options["max_tokens"] = sampling_params.max_tokens
|
||||
if sampling_params.top_p is not None:
|
||||
options["top_p"] = sampling_params.top_p
|
||||
# The following parameters are not supported by Groq API
|
||||
# if sampling_params.top_k is not None:
|
||||
# options["top_k"] = sampling_params.top_k
|
||||
# if sampling_params.repetition_penalty is not None:
|
||||
# options["repetition_penalty"] = sampling_params.repetition_penalty
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs:
|
||||
if logprobs.top_k is not None and logprobs.top_k > 0:
|
||||
options["logprobs"] = True
|
||||
options["top_logprobs"] = logprobs.top_k
|
||||
else:
|
||||
options["logprobs"] = False
|
||||
|
||||
return options
|
||||
|
||||
|
||||
def _process_chat_completion_response(self, response):
|
||||
# Ensure response is an object with a `choices` attribute
|
||||
if not hasattr(response, 'choices') or not isinstance(response.choices, list):
|
||||
raise ValueError("Invalid response format: 'choices' attribute is missing or not a list.")
|
||||
|
||||
first_choice = response.choices[0]
|
||||
|
||||
# Ensure the first choice has a valid `message` field
|
||||
if not hasattr(first_choice, 'message') or not first_choice.message:
|
||||
raise ValueError("Invalid response format: 'message' field is missing in the first choice.")
|
||||
|
||||
tool_calls = []
|
||||
for tool_call in (first_choice.message.tool_calls or []):
|
||||
arguments = getattr(tool_call.function, 'arguments', {})
|
||||
if isinstance(arguments, str):
|
||||
arguments = json.loads(arguments)
|
||||
|
||||
# Append transformed ToolCall
|
||||
tool_calls.append(ToolCall(
|
||||
call_id=getattr(tool_call, 'id', 'unknown_call_id'),
|
||||
tool_name=getattr(tool_call.function, 'name', 'unknown_tool'),
|
||||
arguments=arguments
|
||||
))
|
||||
|
||||
content = first_choice.message.content
|
||||
if content is None:
|
||||
content = "" # Provide a default empty string
|
||||
|
||||
finish_reason = {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(getattr(first_choice, 'finish_reason', None), StopReason.end_of_turn)
|
||||
|
||||
completion_message = CompletionMessage(
|
||||
role=first_choice.message.role,
|
||||
content=content,
|
||||
stop_reason=finish_reason,
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None # Groq does not provide logprobs currently. See reference for latest: https://console.groq.com/docs/api-reference#chat-create
|
||||
)
|
||||
|
||||
|
||||
def _convert_chunk_to_stream_chunk(self, chunk):
|
||||
if not chunk.choices or len(chunk.choices) == 0:
|
||||
return None
|
||||
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
|
||||
# Handle tool calls in full form directly
|
||||
tool_calls = []
|
||||
if delta.tool_calls:
|
||||
for tool_call in delta.tool_calls:
|
||||
arguments = tool_call.function.arguments
|
||||
if isinstance(arguments, str):
|
||||
arguments = json.loads(arguments)
|
||||
|
||||
# Append transformed ToolCall
|
||||
tool_calls.append(ToolCall(
|
||||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
arguments=arguments
|
||||
))
|
||||
|
||||
# Determine event type
|
||||
if choice.finish_reason == 'stop' or choice.finish_reason == 'tool_calls':
|
||||
event_type = ChatCompletionResponseEventType.complete
|
||||
elif delta and delta.role == 'assistant' and not delta.content:
|
||||
event_type = ChatCompletionResponseEventType.start
|
||||
else:
|
||||
event_type = ChatCompletionResponseEventType.progress
|
||||
|
||||
# Handle delta content
|
||||
if delta.content is not None:
|
||||
event_delta = delta.content
|
||||
elif tool_calls:
|
||||
# Construct ToolCallDelta if tool calls exist
|
||||
event_delta = ToolCallDelta(
|
||||
content=tool_calls[0], # Tools currently come once per chunk, and thus, we can sample the first tool as there will not be more than one here.
|
||||
parse_status=ToolCallParseStatus("success") # Groq currently only returns tool calls in one chunk. If a tool call is there, it is complete and has success status.
|
||||
)
|
||||
elif choice.finish_reason == 'stop':
|
||||
# For 'stop' events with no content, set delta to empty string
|
||||
event_delta = ""
|
||||
else:
|
||||
# For non-stop events with no content, set delta to empty string
|
||||
event_delta = ""
|
||||
|
||||
finish_reason = {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(choice.finish_reason, StopReason.end_of_turn)
|
||||
|
||||
# Construct the event
|
||||
event = ChatCompletionResponseEvent(
|
||||
event_type=event_type,
|
||||
delta=event_delta,
|
||||
stop_reason=finish_reason,
|
||||
logprobs=choice.logprobs,
|
||||
)
|
||||
|
||||
# Create the stream chunk
|
||||
stream_chunk = ChatCompletionResponseStreamChunk(event=event)
|
||||
return stream_chunk
|
||||
|
||||
|
||||
async def _process_chat_completion_stream_response(self, stream):
|
||||
if hasattr(stream, "__aiter__"):
|
||||
# Consume as an async iterable
|
||||
async for chunk in stream:
|
||||
stream_chunk = self._convert_chunk_to_stream_chunk(chunk)
|
||||
if stream_chunk:
|
||||
yield stream_chunk
|
||||
elif hasattr(stream, "__iter__"):
|
||||
# Wrap sync iterable in an async generator
|
||||
for chunk in stream:
|
||||
stream_chunk = self._convert_chunk_to_stream_chunk(chunk)
|
||||
if stream_chunk:
|
||||
yield stream_chunk
|
||||
else:
|
||||
raise TypeError(f"'stream' object is not iterable: {type(stream)}")
|
||||
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
@ -18,6 +18,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
|
|||
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
|
||||
|
||||
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.groq import GroqImplConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
|
|
@ -114,6 +115,21 @@ def inference_fireworks() -> ProviderFixture:
|
|||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_groq() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="groq",
|
||||
provider_type="remote::groq",
|
||||
config=GroqImplConfig(
|
||||
api_key=get_env_or_fail("GROQ_API_KEY"),
|
||||
).model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_together() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
|
|
@ -190,6 +206,7 @@ INFERENCE_FIXTURES = [
|
|||
"remote",
|
||||
"bedrock",
|
||||
"nvidia",
|
||||
"groq",
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue