feat(api)!: support passing extra_body to embeddings and vector_stores APIs

Applies the same pattern from #3777 to embeddings and vector_stores.create() endpoints.

Breaking change: Method signatures now accept a single params object with Pydantic extra="allow" instead of individual parameters. Provider-specific params can be passed via extra_body and accessed through params.model_extra.

Updated APIs: openai_embeddings(), openai_create_vector_store(), openai_create_vector_store_file_batch()
This commit is contained in:
Ashwin Bharambe 2025-10-11 15:27:47 -07:00
parent cfd2e303db
commit 74e2976c1e
20 changed files with 364 additions and 297 deletions

View file

@ -9,6 +9,7 @@ from openai import NOT_GIVEN
from llama_stack.apis.inference import (
OpenAIEmbeddingData,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
@ -78,11 +79,7 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
OpenAI-compatible embeddings for NVIDIA NIM.
@ -99,11 +96,11 @@ class NVIDIAInferenceAdapter(OpenAIMixin):
)
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(model),
input=input,
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
user=user if user is not None else NOT_GIVEN,
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=params.encoding_format if params.encoding_format is not None else NOT_GIVEN,
dimensions=params.dimensions if params.dimensions is not None else NOT_GIVEN,
user=params.user if params.user is not None else NOT_GIVEN,
extra_body=extra_body,
)