feat(distro): fork off a starter-gpu distribution (#3240)

The starter distribution added post-training which added torch
dependencies which pulls in all the nvidia CUDA libraries. This made our
starter container very big. We have worked hard to keep the starter
container small so it serves its purpose as a starter. This PR tries to
get it back to its size by forking off duplicate "-gpu" providers for
post-training. These forked providers are then used for a new
`starter-gpu` distribution which can pull in all dependencies.
This commit is contained in:
Ashwin Bharambe 2025-08-22 15:47:15 -07:00 committed by GitHub
parent 3b9278f254
commit 7519b73fcc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 522 additions and 31 deletions

View file

@ -9,7 +9,9 @@ This section contains documentation for all available providers for the **post_t
```{toctree}
:maxdepth: 1
inline_huggingface
inline_torchtune
inline_huggingface-cpu
inline_huggingface-gpu
inline_torchtune-cpu
inline_torchtune-gpu
remote_nvidia
```

View file

@ -0,0 +1,41 @@
# inline::huggingface-cpu
## Description
HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `device` | `<class 'str'>` | No | cuda | |
| `distributed_backend` | `Literal['fsdp', 'deepspeed'` | No | | |
| `checkpoint_format` | `Literal['full_state', 'huggingface'` | No | huggingface | |
| `chat_template` | `<class 'str'>` | No | <|user|>
{input}
<|assistant|>
{output} | |
| `model_specific_config` | `<class 'dict'>` | No | {'trust_remote_code': True, 'attn_implementation': 'sdpa'} | |
| `max_seq_length` | `<class 'int'>` | No | 2048 | |
| `gradient_checkpointing` | `<class 'bool'>` | No | False | |
| `save_total_limit` | `<class 'int'>` | No | 3 | |
| `logging_steps` | `<class 'int'>` | No | 10 | |
| `warmup_ratio` | `<class 'float'>` | No | 0.1 | |
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
| `dpo_beta` | `<class 'float'>` | No | 0.1 | |
| `use_reference_model` | `<class 'bool'>` | No | True | |
| `dpo_loss_type` | `Literal['sigmoid', 'hinge', 'ipo', 'kto_pair'` | No | sigmoid | |
| `dpo_output_dir` | `<class 'str'>` | No | | |
## Sample Configuration
```yaml
checkpoint_format: huggingface
distributed_backend: null
device: cpu
dpo_output_dir: ~/.llama/dummy/dpo_output
```

View file

@ -0,0 +1,41 @@
# inline::huggingface-gpu
## Description
HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `device` | `<class 'str'>` | No | cuda | |
| `distributed_backend` | `Literal['fsdp', 'deepspeed'` | No | | |
| `checkpoint_format` | `Literal['full_state', 'huggingface'` | No | huggingface | |
| `chat_template` | `<class 'str'>` | No | <|user|>
{input}
<|assistant|>
{output} | |
| `model_specific_config` | `<class 'dict'>` | No | {'trust_remote_code': True, 'attn_implementation': 'sdpa'} | |
| `max_seq_length` | `<class 'int'>` | No | 2048 | |
| `gradient_checkpointing` | `<class 'bool'>` | No | False | |
| `save_total_limit` | `<class 'int'>` | No | 3 | |
| `logging_steps` | `<class 'int'>` | No | 10 | |
| `warmup_ratio` | `<class 'float'>` | No | 0.1 | |
| `weight_decay` | `<class 'float'>` | No | 0.01 | |
| `dataloader_num_workers` | `<class 'int'>` | No | 4 | |
| `dataloader_pin_memory` | `<class 'bool'>` | No | True | |
| `dpo_beta` | `<class 'float'>` | No | 0.1 | |
| `use_reference_model` | `<class 'bool'>` | No | True | |
| `dpo_loss_type` | `Literal['sigmoid', 'hinge', 'ipo', 'kto_pair'` | No | sigmoid | |
| `dpo_output_dir` | `<class 'str'>` | No | | |
## Sample Configuration
```yaml
checkpoint_format: huggingface
distributed_backend: null
device: cpu
dpo_output_dir: ~/.llama/dummy/dpo_output
```

View file

@ -0,0 +1,20 @@
# inline::torchtune-cpu
## Description
TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `torch_seed` | `int \| None` | No | | |
| `checkpoint_format` | `Literal['meta', 'huggingface'` | No | meta | |
## Sample Configuration
```yaml
checkpoint_format: meta
```

View file

@ -0,0 +1,20 @@
# inline::torchtune-gpu
## Description
TorchTune-based post-training provider for fine-tuning and optimizing models using Meta's TorchTune framework.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `torch_seed` | `int \| None` | No | | |
| `checkpoint_format` | `Literal['meta', 'huggingface'` | No | meta | |
## Sample Configuration
```yaml
checkpoint_format: meta
```