mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-09 19:58:29 +00:00
fix rag test
This commit is contained in:
parent
7da7f24504
commit
75e429f950
12 changed files with 49 additions and 18 deletions
|
@ -236,6 +236,8 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
metadata = {}
|
||||
if model_type is None:
|
||||
model_type = ModelType.llm
|
||||
if "embedding_dimension" not in metadata and model_type == ModelType.embedding:
|
||||
raise ValueError("Embedding model must have an embedding dimension in its metadata")
|
||||
model = Model(
|
||||
identifier=model_id,
|
||||
provider_resource_id=provider_model_id,
|
||||
|
|
|
@ -19,7 +19,6 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
|
@ -45,8 +44,6 @@ class SentenceTransformersInferenceImpl(
|
|||
pass
|
||||
|
||||
async def register_model(self, model: Model) -> None:
|
||||
if "embedding_dimension" not in model.metadata and model.model_type == ModelType.embedding:
|
||||
raise ValueError("Embedding model must have an embedding dimension in its metadata")
|
||||
_ = self._load_sentence_transformer_model(model.provider_resource_id)
|
||||
return model
|
||||
|
||||
|
|
|
@ -77,7 +77,7 @@ def typeannotation(
|
|||
"""
|
||||
|
||||
def wrap(cls: Type[T]) -> Type[T]:
|
||||
setattr(cls, "__repr__", _compact_dataclass_repr)
|
||||
cls.__repr__ = _compact_dataclass_repr
|
||||
if not dataclasses.is_dataclass(cls):
|
||||
cls = dataclasses.dataclass( # type: ignore[call-overload]
|
||||
cls,
|
||||
|
|
|
@ -203,7 +203,7 @@ def schema_to_type(schema: Schema, *, module: types.ModuleType, class_name: str)
|
|||
if type_def.default is not dataclasses.MISSING:
|
||||
raise TypeError("disallowed: `default` for top-level type definitions")
|
||||
|
||||
setattr(type_def.type, "__module__", module.__name__)
|
||||
type_def.type.__module__ = module.__name__
|
||||
setattr(module, type_name, type_def.type)
|
||||
|
||||
return node_to_typedef(module, class_name, top_node).type
|
||||
|
|
|
@ -325,7 +325,7 @@ class TupleDeserializer(Deserializer[Tuple[Any, ...]]):
|
|||
f"type `{self.container_type}` expects a JSON `array` of length {count} but received length {len(data)}"
|
||||
)
|
||||
|
||||
return tuple(item_parser.parse(item) for item_parser, item in zip(self.item_parsers, data))
|
||||
return tuple(item_parser.parse(item) for item_parser, item in zip(self.item_parsers, data, strict=False))
|
||||
|
||||
|
||||
class UnionDeserializer(Deserializer):
|
||||
|
|
|
@ -263,8 +263,8 @@ def extend_enum(
|
|||
enum_class: Type[enum.Enum] = enum.Enum(extend.__name__, values) # type: ignore
|
||||
|
||||
# assign the newly created type to the same module where the extending class is defined
|
||||
setattr(enum_class, "__module__", extend.__module__)
|
||||
setattr(enum_class, "__doc__", extend.__doc__)
|
||||
enum_class.__module__ = extend.__module__
|
||||
enum_class.__doc__ = extend.__doc__
|
||||
setattr(sys.modules[extend.__module__], extend.__name__, enum_class)
|
||||
|
||||
return enum.unique(enum_class)
|
||||
|
@ -874,6 +874,7 @@ def is_generic_instance(obj: Any, typ: TypeLike) -> bool:
|
|||
for tuple_item_type, item in zip(
|
||||
(tuple_item_type for tuple_item_type in typing.get_args(typ)),
|
||||
(item for item in obj),
|
||||
strict=False,
|
||||
)
|
||||
)
|
||||
elif origin_type is Union:
|
||||
|
@ -954,6 +955,7 @@ class RecursiveChecker:
|
|||
for tuple_item_type, item in zip(
|
||||
(tuple_item_type for tuple_item_type in typing.get_args(typ)),
|
||||
(item for item in obj),
|
||||
strict=False,
|
||||
)
|
||||
)
|
||||
elif origin_type is Union:
|
||||
|
|
|
@ -216,7 +216,7 @@ class TypedTupleSerializer(Serializer[tuple]):
|
|||
self.item_generators = tuple(_get_serializer(item_type, context) for item_type in item_types)
|
||||
|
||||
def generate(self, obj: tuple) -> List[JsonType]:
|
||||
return [item_generator.generate(item) for item_generator, item in zip(self.item_generators, obj)]
|
||||
return [item_generator.generate(item) for item_generator, item in zip(self.item_generators, obj, strict=False)]
|
||||
|
||||
|
||||
class CustomSerializer(Serializer):
|
||||
|
|
|
@ -144,7 +144,8 @@ models:
|
|||
provider_id: together
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
|
|
|
@ -138,7 +138,8 @@ models:
|
|||
provider_id: together
|
||||
provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
- metadata:
|
||||
embedding_dimension: 768
|
||||
model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
provider_id: together
|
||||
provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval
|
||||
|
|
|
@ -86,7 +86,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_id="together",
|
||||
model_type=ModelType.embedding,
|
||||
provider_model_id="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
metadata={},
|
||||
metadata={"embedding_dimension": 768},
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
|
|
|
@ -19,8 +19,12 @@ from llama_stack_client.types.shared.completion_message import CompletionMessage
|
|||
from llama_stack_client.types.shared_params.agent_config import AgentConfig, ToolConfig
|
||||
from llama_stack_client.types.tool_def_param import Parameter
|
||||
|
||||
from llama_stack.apis.agents.agents import AgentConfig as Server__AgentConfig
|
||||
from llama_stack.apis.agents.agents import ToolChoice
|
||||
from llama_stack.apis.agents.agents import (
|
||||
AgentConfig as Server__AgentConfig,
|
||||
)
|
||||
from llama_stack.apis.agents.agents import (
|
||||
ToolChoice,
|
||||
)
|
||||
|
||||
|
||||
class TestClientTool(ClientTool):
|
||||
|
@ -417,11 +421,14 @@ def test_rag_agent(llama_stack_client, agent_config):
|
|||
)
|
||||
for i, url in enumerate(urls)
|
||||
]
|
||||
embdding_models = [x for x in llama_stack_client.models.list() if x.model_type == "embedding"]
|
||||
embedding_model = embdding_models[0]
|
||||
vector_db_id = f"test-vector-db-{uuid4()}"
|
||||
|
||||
llama_stack_client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
embedding_model=embedding_model.identifier,
|
||||
embedding_dimension=embedding_model.metadata["embedding_dimension"],
|
||||
)
|
||||
llama_stack_client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
|
@ -444,11 +451,11 @@ def test_rag_agent(llama_stack_client, agent_config):
|
|||
session_id = rag_agent.create_session(f"test-session-{uuid4()}")
|
||||
user_prompts = [
|
||||
(
|
||||
"Instead of the standard multi-head attention, what attention type does Llama3-8B use?",
|
||||
"What is main changes between Llama2-7B and Llama3-8B models on how attention is used?",
|
||||
"grouped",
|
||||
),
|
||||
(
|
||||
"What `tune` command to use for getting access to Llama3-8B-Instruct ?",
|
||||
"What `tune` command to use for getting access to Llama3-8B-Instruct model?",
|
||||
"download",
|
||||
),
|
||||
]
|
||||
|
@ -458,6 +465,7 @@ def test_rag_agent(llama_stack_client, agent_config):
|
|||
messages=[{"role": "user", "content": prompt}],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
logs = [str(log) for log in EventLogger().log(response) if log is not None]
|
||||
logs_str = "".join(logs)
|
||||
assert "Tool:query_from_memory" in logs_str
|
||||
|
|
20
tests/client-sdk/inference/test_embedding.py
Normal file
20
tests/client-sdk/inference/test_embedding.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_embedding(llama_stack_client):
|
||||
emb_models = [x for x in llama_stack_client.models.list() if x.model_type == "embedding"]
|
||||
if len(emb_models) == 0:
|
||||
pytest.skip("No embedding models found")
|
||||
|
||||
embedding_response = llama_stack_client.inference.embeddings(
|
||||
model_id=emb_models[0].identifier, contents=["Hello, world!", "This is a test", "Testing embeddings"]
|
||||
)
|
||||
assert embedding_response is not None
|
||||
assert len(embedding_response.embeddings) == 3
|
||||
assert len(embedding_response.embeddings[0]) == emb_models[0].metadata["embedding_dimension"]
|
Loading…
Add table
Add a link
Reference in a new issue