Merge branch 'main' of https://github.com/santiagxf/llama-stack into santiagxf/azure-ai-inference

This commit is contained in:
Facundo Santiago 2024-11-08 15:04:48 +00:00
commit 75f742775d
98 changed files with 1131 additions and 586 deletions

View file

@ -12,6 +12,7 @@ from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
from llama_stack.apis.datasets import DatasetDef
from llama_stack.apis.eval_tasks import EvalTaskDef
from llama_stack.apis.memory_banks import MemoryBankDef
from llama_stack.apis.models import ModelDef
from llama_stack.apis.scoring_functions import ScoringFnDef
@ -35,6 +36,7 @@ class Api(Enum):
memory_banks = "memory_banks"
datasets = "datasets"
scoring_functions = "scoring_functions"
eval_tasks = "eval_tasks"
# built-in API
inspect = "inspect"
@ -70,6 +72,12 @@ class ScoringFunctionsProtocolPrivate(Protocol):
async def register_scoring_function(self, function_def: ScoringFnDef) -> None: ...
class EvalTasksProtocolPrivate(Protocol):
async def list_eval_tasks(self) -> List[EvalTaskDef]: ...
async def register_eval_task(self, eval_task_def: EvalTaskDef) -> None: ...
@json_schema_type
class ProviderSpec(BaseModel):
api: Api
@ -82,6 +90,10 @@ class ProviderSpec(BaseModel):
default_factory=list,
description="Higher-level API surfaces may depend on other providers to provide their functionality",
)
deprecation_warning: Optional[str] = Field(
default=None,
description="If this provider is deprecated, specify the warning message here",
)
# used internally by the resolver; this is a hack for now
deps__: List[str] = Field(default_factory=list)

View file

@ -4,10 +4,9 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel, Field
from llama_stack.providers.utils.kvstore import KVStoreConfig
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
from pydantic import BaseModel, Field
class MetaReferenceAgentsImplConfig(BaseModel):

View file

@ -11,9 +11,8 @@ from datetime import datetime
from typing import List, Optional
from llama_stack.apis.agents import * # noqa: F403
from pydantic import BaseModel
from llama_stack.providers.utils.kvstore import KVStore
from pydantic import BaseModel
class AgentSessionInfo(BaseModel):

View file

@ -10,14 +10,13 @@ from jinja2 import Template
from llama_models.llama3.api import * # noqa: F403
from termcolor import cprint # noqa: F401
from llama_stack.apis.agents import (
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
MemoryQueryGenerator,
MemoryQueryGeneratorConfig,
)
from termcolor import cprint # noqa: F401
from llama_stack.apis.inference import * # noqa: F403

View file

@ -9,8 +9,7 @@ from typing import List
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import * # noqa: F403
from llama_stack.providers.inline.meta_reference.agents.safety import ShieldRunnerMixin
from ..safety import ShieldRunnerMixin
from .builtin import BaseTool

View file

@ -10,9 +10,8 @@ from llama_models.datatypes import * # noqa: F403
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import * # noqa: F401, F403
from pydantic import BaseModel, Field, field_validator
from llama_stack.providers.utils.inference import supported_inference_models
from pydantic import BaseModel, Field, field_validator
class MetaReferenceInferenceConfig(BaseModel):

View file

@ -35,13 +35,12 @@ from termcolor import cprint
from llama_stack.apis.inference import * # noqa: F403
from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.providers.utils.inference.prompt_adapter import (
augment_content_with_response_format_prompt,
chat_completion_request_to_messages,
)
from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData
from .config import (
Fp8QuantizationConfig,

View file

@ -28,13 +28,13 @@ from fairscale.nn.model_parallel.initialize import (
get_model_parallel_src_rank,
)
from llama_stack.apis.inference import ChatCompletionRequest, CompletionRequest
from pydantic import BaseModel, Field
from torch.distributed.launcher.api import elastic_launch, LaunchConfig
from typing_extensions import Annotated
from llama_stack.apis.inference import ChatCompletionRequest, CompletionRequest
from .generation import TokenResult

View file

@ -20,16 +20,15 @@ from llama_models.datatypes import CheckpointQuantizationFormat
from llama_models.llama3.api.args import ModelArgs
from llama_models.llama3.reference_impl.model import Transformer, TransformerBlock
from llama_models.sku_list import resolve_model
from llama_stack.apis.inference import QuantizationType
from termcolor import cprint
from torch import nn, Tensor
from torchao.quantization.GPTQ import Int8DynActInt4WeightLinear
from llama_stack.apis.inference import QuantizationType
from llama_stack.providers.inline.meta_reference.inference.config import (
MetaReferenceQuantizedInferenceConfig,
)
from ..config import MetaReferenceQuantizedInferenceConfig
def swiglu_wrapper(

View file

@ -5,9 +5,9 @@
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field, field_validator
from llama_stack.providers.utils.inference import supported_inference_models
from pydantic import BaseModel, Field, field_validator
@json_schema_type

View file

@ -5,13 +5,13 @@
# the root directory of this source tree.
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
SqliteKVStoreConfig,
)
from pydantic import BaseModel
@json_schema_type

View file

@ -8,10 +8,11 @@ import logging
from typing import Any, Dict, List, Optional
import faiss
import numpy as np
from numpy.typing import NDArray
import faiss
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.memory import * # noqa: F403

View file

@ -6,13 +6,15 @@
from enum import Enum
from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.common.job_types import Job
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval import Eval, EvalCandidate, EvaluateResponse, JobStatus
from llama_stack.apis.eval_tasks import EvalTaskDef
from llama_stack.apis.inference import Inference
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
from .config import MetaReferenceEvalConfig
@ -25,7 +27,7 @@ class ColumnName(Enum):
generated_answer = "generated_answer"
class MetaReferenceEvalImpl(Eval):
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
def __init__(
self,
config: MetaReferenceEvalConfig,
@ -43,10 +45,18 @@ class MetaReferenceEvalImpl(Eval):
# TODO: assume sync job, will need jobs API for async scheduling
self.jobs = {}
self.eval_tasks = {}
async def initialize(self) -> None: ...
async def shutdown(self) -> None: ...
async def register_eval_task(self, task_def: EvalTaskDef) -> None:
self.eval_tasks[task_def.identifier] = task_def
async def list_eval_tasks(self) -> List[EvalTaskDef]:
return list(self.eval_tasks.values())
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
@ -70,21 +80,26 @@ class MetaReferenceEvalImpl(Eval):
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
)
async def evaluate_batch(
async def run_eval(
self,
dataset_id: str,
candidate: EvalCandidate,
scoring_functions: List[str],
task_id: str,
task_config: EvalTaskConfig,
) -> Job:
task_def = self.eval_tasks[task_id]
dataset_id = task_def.dataset_id
candidate = task_config.eval_candidate
scoring_functions = task_def.scoring_functions
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
all_rows = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=-1,
)
res = await self.evaluate(
res = await self.evaluate_rows(
task_id=task_id,
input_rows=all_rows.rows,
candidate=candidate,
scoring_functions=scoring_functions,
task_config=task_config,
)
# TODO: currently needs to wait for generation before returning
@ -93,12 +108,14 @@ class MetaReferenceEvalImpl(Eval):
self.jobs[job_id] = res
return Job(job_id=job_id)
async def evaluate(
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
candidate: EvalCandidate,
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
candidate = task_config.eval_candidate
if candidate.type == "agent":
raise NotImplementedError(
"Evaluation with generation has not been implemented for agents"
@ -122,7 +139,10 @@ class MetaReferenceEvalImpl(Eval):
}
)
elif ColumnName.chat_completion_input.value in x:
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
chat_completion_input_str = str(
x[ColumnName.chat_completion_input.value]
)
input_messages = eval(chat_completion_input_str)
input_messages = [UserMessage(**x) for x in input_messages]
messages = []
if candidate.system_message:
@ -147,23 +167,33 @@ class MetaReferenceEvalImpl(Eval):
for input_r, generated_r in zip(input_rows, generations)
]
if task_config.type == "app" and task_config.scoring_params is not None:
scoring_functions_dict = {
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {
scoring_fn_id: None for scoring_fn_id in scoring_functions
}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
)
return EvaluateResponse(generations=generations, scores=score_response.results)
async def job_status(self, job_id: str) -> Optional[JobStatus]:
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
if job_id in self.jobs:
return JobStatus.completed
return None
async def job_cancel(self, job_id: str) -> None:
async def job_cancel(self, task_id: str, job_id: str) -> None:
raise NotImplementedError("Job cancel is not implemented yet")
async def job_result(self, job_id: str) -> EvaluateResponse:
status = await self.job_status(job_id)
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
status = await self.job_status(task_id, job_id)
if not status or status != JobStatus.completed:
raise ValueError(f"Job is not completed, Status: {status.value}")

View file

@ -1,73 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import tempfile
import pytest
from llama_stack.apis.memory import MemoryBankType, VectorMemoryBankDef
from llama_stack.providers.inline.meta_reference.memory.config import FaissImplConfig
from llama_stack.providers.inline.meta_reference.memory.faiss import FaissMemoryImpl
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
class TestFaissMemoryImpl:
@pytest.fixture
def faiss_impl(self):
# Create a temporary SQLite database file
temp_db = tempfile.NamedTemporaryFile(suffix=".db", delete=False)
config = FaissImplConfig(kvstore=SqliteKVStoreConfig(db_path=temp_db.name))
return FaissMemoryImpl(config)
@pytest.mark.asyncio
async def test_initialize(self, faiss_impl):
# Test empty initialization
await faiss_impl.initialize()
assert len(faiss_impl.cache) == 0
# Test initialization with existing banks
bank = VectorMemoryBankDef(
identifier="test_bank",
type=MemoryBankType.vector.value,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
# Register a bank and reinitialize to test loading
await faiss_impl.register_memory_bank(bank)
# Create new instance to test initialization with existing data
new_impl = FaissMemoryImpl(faiss_impl.config)
await new_impl.initialize()
assert len(new_impl.cache) == 1
assert "test_bank" in new_impl.cache
@pytest.mark.asyncio
async def test_register_memory_bank(self, faiss_impl):
bank = VectorMemoryBankDef(
identifier="test_bank",
type=MemoryBankType.vector.value,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
await faiss_impl.initialize()
await faiss_impl.register_memory_bank(bank)
assert "test_bank" in faiss_impl.cache
assert faiss_impl.cache["test_bank"].bank == bank
# Verify persistence
new_impl = FaissMemoryImpl(faiss_impl.config)
await new_impl.initialize()
assert "test_bank" in new_impl.cache
if __name__ == "__main__":
pytest.main([__file__])

View file

@ -74,8 +74,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
return scoring_fn_defs_list
async def register_scoring_function(self, function_def: ScoringFnDef) -> None:
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
self.scoring_fn_id_impls[function_def.identifier] = self.llm_as_judge_fn
raise NotImplementedError("Register scoring function not implemented yet")
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
@ -97,7 +96,7 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
async def score_batch(
self,
dataset_id: str,
scoring_functions: List[str],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
@ -106,7 +105,8 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
rows_in_page=-1,
)
res = await self.score(
input_rows=all_rows.rows, scoring_functions=scoring_functions
input_rows=all_rows.rows,
scoring_functions=scoring_functions,
)
if save_results_dataset:
# TODO: persist and register dataset on to server for reading
@ -118,14 +118,19 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
)
async def score(
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
self,
input_rows: List[Dict[str, Any]],
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
) -> ScoreResponse:
res = {}
for scoring_fn_id in scoring_functions:
for scoring_fn_id in scoring_functions.keys():
if scoring_fn_id not in self.scoring_fn_id_impls:
raise ValueError(f"Scoring function {scoring_fn_id} is not supported.")
scoring_fn = self.scoring_fn_id_impls[scoring_fn_id]
score_results = await scoring_fn.score(input_rows, scoring_fn_id)
scoring_fn_params = scoring_functions.get(scoring_fn_id, None)
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,

View file

@ -36,7 +36,10 @@ class BaseScoringFn(ABC):
@abstractmethod
async def score_row(
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
raise NotImplementedError()
@ -50,8 +53,9 @@ class BaseScoringFn(ABC):
self,
input_rows: List[Dict[str, Any]],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> List[ScoringResultRow]:
return [
await self.score_row(input_row, scoring_fn_identifier)
await self.score_row(input_row, scoring_fn_identifier, scoring_params)
for input_row in input_rows
]

View file

@ -35,6 +35,7 @@ class EqualityScoringFn(BaseScoringFn):
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = "equality",
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
assert "expected_answer" in input_row, "Expected answer not found in input row."
assert (

View file

@ -28,9 +28,13 @@ llm_as_judge_8b_correctness = ScoringFnDef(
description="Llm As Judge Scoring Function",
parameters=[],
return_type=NumberType(),
context=LLMAsJudgeContext(
params=LLMAsJudgeScoringFnParams(
prompt_template=JUDGE_PROMPT,
judge_model="Llama3.1-8B-Instruct",
judge_score_regex=[r"Total rating: (\d+)", r"rating: (\d+)", r"Rating: (\d+)"],
judge_score_regexes=[
r"Total rating: (\d+)",
r"rating: (\d+)",
r"Rating: (\d+)",
],
),
)

View file

@ -36,31 +36,37 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
assert (
scoring_fn_identifier is not None
), "Scoring function identifier not found."
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
assert fn_def.context is not None, f"LLMAsJudgeContext not found for {fn_def}."
# override params if scoring_params is provided
if scoring_params is not None:
fn_def.params = scoring_params
assert fn_def.params is not None, f"LLMAsJudgeparams not found for {fn_def}."
assert (
fn_def.context.prompt_template is not None
fn_def.params.prompt_template is not None
), "LLM Judge prompt_template not found."
assert (
fn_def.context.judge_score_regex is not None
), "LLM Judge judge_score_regex not found."
fn_def.params.judge_score_regexes is not None
), "LLM Judge judge_score_regexes not found."
input_query = input_row["input_query"]
expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"]
judge_input_msg = fn_def.context.prompt_template.format(
judge_input_msg = fn_def.params.prompt_template.format(
input_query=input_query,
expected_answer=expected_answer,
generated_answer=generated_answer,
)
judge_response = await self.inference_api.chat_completion(
model=fn_def.context.judge_model,
model=fn_def.params.judge_model,
messages=[
{
"role": "user",
@ -69,10 +75,10 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
],
)
content = judge_response.completion_message.content
rating_regexs = fn_def.context.judge_score_regex
rating_regexes = fn_def.params.judge_score_regexes
judge_rating = None
for regex in rating_regexs:
for regex in rating_regexes:
match = re.search(regex, content)
if match:
judge_rating = int(match.group(1))

View file

@ -34,6 +34,7 @@ class SubsetOfScoringFn(BaseScoringFn):
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = "subset_of",
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"]

View file

@ -22,8 +22,8 @@ def available_providers() -> List[ProviderSpec]:
"scikit-learn",
]
+ kvstore_dependencies(),
module="llama_stack.providers.inline.meta_reference.agents",
config_class="llama_stack.providers.inline.meta_reference.agents.MetaReferenceAgentsImplConfig",
module="llama_stack.providers.inline.agents.meta_reference",
config_class="llama_stack.providers.inline.agents.meta_reference.MetaReferenceAgentsImplConfig",
api_dependencies=[
Api.inference,
Api.safety,

View file

@ -27,8 +27,8 @@ def available_providers() -> List[ProviderSpec]:
api=Api.inference,
provider_type="meta-reference",
pip_packages=META_REFERENCE_DEPS,
module="llama_stack.providers.inline.meta_reference.inference",
config_class="llama_stack.providers.inline.meta_reference.inference.MetaReferenceInferenceConfig",
module="llama_stack.providers.inline.inference.meta_reference",
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
),
InlineProviderSpec(
api=Api.inference,
@ -40,8 +40,17 @@ def available_providers() -> List[ProviderSpec]:
"torchao==0.5.0",
]
),
module="llama_stack.providers.inline.meta_reference.inference",
config_class="llama_stack.providers.inline.meta_reference.inference.MetaReferenceQuantizedInferenceConfig",
module="llama_stack.providers.inline.inference.meta_reference",
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceQuantizedInferenceConfig",
),
InlineProviderSpec(
api=Api.inference,
provider_type="vllm",
pip_packages=[
"vllm",
],
module="llama_stack.providers.inline.inference.vllm",
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
),
remote_provider_spec(
api=Api.inference,
@ -117,7 +126,7 @@ def available_providers() -> List[ProviderSpec]:
],
module="llama_stack.providers.remote.inference.together",
config_class="llama_stack.providers.remote.inference.together.TogetherImplConfig",
provider_data_validator="llama_stack.providers.remote.safety.together.TogetherProviderDataValidator",
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
),
),
remote_provider_spec(
@ -149,13 +158,4 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.adapters.inference.azure_ai_inference.AzureAIInferenceConfig",
),
),
InlineProviderSpec(
api=Api.inference,
provider_type="vllm",
pip_packages=[
"vllm",
],
module="llama_stack.providers.inline.vllm",
config_class="llama_stack.providers.inline.vllm.VLLMConfig",
),
]

View file

@ -36,8 +36,16 @@ def available_providers() -> List[ProviderSpec]:
api=Api.memory,
provider_type="meta-reference",
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
module="llama_stack.providers.inline.meta_reference.memory",
config_class="llama_stack.providers.inline.meta_reference.memory.FaissImplConfig",
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
deprecation_warning="Please use the `faiss` provider instead.",
),
InlineProviderSpec(
api=Api.memory,
provider_type="faiss",
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
module="llama_stack.providers.inline.memory.faiss",
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
),
remote_provider_spec(
Api.memory,

View file

@ -24,8 +24,8 @@ def available_providers() -> List[ProviderSpec]:
"transformers",
"torch --index-url https://download.pytorch.org/whl/cpu",
],
module="llama_stack.providers.inline.meta_reference.safety",
config_class="llama_stack.providers.inline.meta_reference.safety.SafetyConfig",
module="llama_stack.providers.inline.safety.meta_reference",
config_class="llama_stack.providers.inline.safety.meta_reference.SafetyConfig",
api_dependencies=[
Api.inference,
],
@ -54,8 +54,8 @@ def available_providers() -> List[ProviderSpec]:
pip_packages=[
"codeshield",
],
module="llama_stack.providers.inline.meta_reference.codeshield",
config_class="llama_stack.providers.inline.meta_reference.codeshield.CodeShieldConfig",
module="llama_stack.providers.inline.safety.meta_reference",
config_class="llama_stack.providers.inline.safety.meta_reference.CodeShieldConfig",
api_dependencies=[],
),
]

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from llama_models.schema_utils import json_schema_type
from pydantic import BaseModel, Field
@ -14,7 +16,7 @@ class FireworksImplConfig(BaseModel):
default="https://api.fireworks.ai/inference",
description="The URL for the Fireworks server",
)
api_key: str = Field(
default="",
api_key: Optional[str] = Field(
default=None,
description="The Fireworks.ai API Key",
)

View file

@ -9,12 +9,11 @@ from typing import AsyncGenerator
from fireworks.client import Fireworks
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
@ -32,7 +31,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import FireworksImplConfig
FIREWORKS_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
@ -41,10 +39,13 @@ FIREWORKS_SUPPORTED_MODELS = {
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
"Llama3.2-11B-Vision-Instruct": "fireworks/llama-v3p2-11b-vision-instruct",
"Llama3.2-90B-Vision-Instruct": "fireworks/llama-v3p2-90b-vision-instruct",
"Llama-Guard-3-8B": "fireworks/llama-guard-3-8b",
}
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
class FireworksInferenceAdapter(
ModelRegistryHelper, Inference, NeedsRequestProviderData
):
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
@ -53,11 +54,24 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
pass
async def shutdown(self) -> None:
pass
def _get_client(self) -> Fireworks:
fireworks_api_key = None
if self.config.api_key is not None:
fireworks_api_key = self.config.api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.fireworks_api_key:
raise ValueError(
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
)
fireworks_api_key = provider_data.fireworks_api_key
return Fireworks(api_key=fireworks_api_key)
async def completion(
self,
model: str,
@ -75,28 +89,53 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
stream=stream,
logprobs=logprobs,
)
client = Fireworks(api_key=self.config.api_key)
if stream:
return self._stream_completion(request, client)
return self._stream_completion(request)
else:
return await self._nonstream_completion(request, client)
return await self._nonstream_completion(request)
async def _nonstream_completion(
self, request: CompletionRequest, client: Fireworks
self, request: CompletionRequest
) -> CompletionResponse:
params = await self._get_params(request)
r = await client.completion.acreate(**params)
r = await self._get_client().completion.acreate(**params)
return process_completion_response(r, self.formatter)
async def _stream_completion(
self, request: CompletionRequest, client: Fireworks
) -> AsyncGenerator:
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
stream = client.completion.acreate(**params)
# Wrapper for async generator similar
async def _to_async_generator():
stream = self._get_client().completion.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
def _build_options(
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
) -> dict:
options = get_sampling_options(sampling_params)
options.setdefault("max_tokens", 512)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
return options
async def chat_completion(
self,
model: str,
@ -121,32 +160,35 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
logprobs=logprobs,
)
client = Fireworks(api_key=self.config.api_key)
if stream:
return self._stream_chat_completion(request, client)
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request, client)
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = await self._get_params(request)
if "messages" in params:
r = await client.chat.completions.acreate(**params)
r = await self._get_client().chat.completions.acreate(**params)
else:
r = await client.completion.acreate(**params)
r = await self._get_client().completion.acreate(**params)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = await self._get_params(request)
if "messages" in params:
stream = client.chat.completions.acreate(**params)
else:
stream = client.completion.acreate(**params)
async def _to_async_generator():
if "messages" in params:
stream = await self._get_client().chat.completions.acreate(**params)
else:
stream = self._get_client().completion.create(**params)
for chunk in stream:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
@ -167,41 +209,22 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
input_dict["prompt"] = chat_completion_request_to_prompt(
request, self.formatter
)
elif isinstance(request, CompletionRequest):
else:
assert (
not media_present
), "Fireworks does not support media for Completion requests"
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
else:
raise ValueError(f"Unknown request type {type(request)}")
# Fireworks always prepends with BOS
if "prompt" in input_dict:
if input_dict["prompt"].startswith("<|begin_of_text|>"):
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
options = get_sampling_options(request.sampling_params)
options.setdefault("max_tokens", 512)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value:
options["response_format"] = {
"type": "json_object",
"schema": fmt.json_schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
options["response_format"] = {
"type": "grammar",
"grammar": fmt.bnf,
}
else:
raise ValueError(f"Unknown response format {fmt.type}")
return {
"model": self.map_to_provider_model(request.model),
**input_dict,
"stream": request.stream,
**options,
**self._build_options(request.sampling_params, request.response_format),
}
async def embeddings(

View file

@ -4,9 +4,15 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel
from .config import TogetherImplConfig
class TogetherProviderDataValidator(BaseModel):
together_api_key: str
async def get_adapter_impl(config: TogetherImplConfig, _deps):
from .together import TogetherInferenceAdapter

View file

@ -11,7 +11,7 @@ import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.meta_reference.agents import (
from llama_stack.providers.inline.agents.meta_reference import (
MetaReferenceAgentsImplConfig,
)

View file

@ -153,4 +153,7 @@ pytest_plugins = [
"llama_stack.providers.tests.safety.fixtures",
"llama_stack.providers.tests.memory.fixtures",
"llama_stack.providers.tests.agents.fixtures",
"llama_stack.providers.tests.datasetio.fixtures",
"llama_stack.providers.tests.scoring.fixtures",
"llama_stack.providers.tests.eval.fixtures",
]

View file

@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from .fixtures import DATASETIO_FIXTURES
def pytest_configure(config):
for fixture_name in DATASETIO_FIXTURES:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
)
def pytest_generate_tests(metafunc):
if "datasetio_stack" in metafunc.fixturenames:
metafunc.parametrize(
"datasetio_stack",
[
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
for fixture_name in DATASETIO_FIXTURES
],
indirect=True,
)

View file

@ -0,0 +1,48 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
from ..conftest import ProviderFixture, remote_stack_fixture
@pytest.fixture(scope="session")
def datasetio_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def datasetio_meta_reference() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="meta-reference",
config={},
)
],
)
DATASETIO_FIXTURES = ["meta_reference", "remote"]
@pytest_asyncio.fixture(scope="session")
async def datasetio_stack(request):
fixture_name = request.param
fixture = request.getfixturevalue(f"datasetio_{fixture_name}")
impls = await resolve_impls_for_test_v2(
[Api.datasetio],
{"datasetio": fixture.providers},
fixture.provider_data,
)
return impls[Api.datasetio], impls[Api.datasets]

View file

@ -1,4 +0,0 @@
providers:
- provider_id: test-meta
provider_type: meta-reference
config: {}

View file

@ -3,11 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
import pytest_asyncio
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.distribution.datatypes import * # noqa: F403
@ -15,35 +14,11 @@ import base64
import mimetypes
from pathlib import Path
from llama_stack.providers.tests.resolver import resolve_impls_for_test
# How to run this test:
#
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
# since it depends on the provider you are testing. On top of that you need
# `pytest` and `pytest-asyncio` installed.
#
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
#
# 3. Run:
#
# ```bash
# PROVIDER_ID=<your_provider> \
# PROVIDER_CONFIG=provider_config.yaml \
# pytest -s llama_stack/providers/tests/datasetio/test_datasetio.py \
# --tb=short --disable-warnings
# ```
@pytest_asyncio.fixture(scope="session")
async def datasetio_settings():
impls = await resolve_impls_for_test(
Api.datasetio,
)
return {
"datasetio_impl": impls[Api.datasetio],
"datasets_impl": impls[Api.datasets],
}
# pytest llama_stack/providers/tests/datasetio/test_datasetio.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
def data_url_from_file(file_path: str) -> str:
@ -82,8 +57,7 @@ async def register_dataset(
dataset = DatasetDefWithProvider(
identifier=dataset_id,
provider_id=os.environ.get("DATASETIO_PROVIDER_ID", None)
or os.environ["PROVIDER_ID"],
provider_id="",
url=URL(
uri=test_url,
),
@ -92,57 +66,47 @@ async def register_dataset(
await datasets_impl.register_dataset(dataset)
@pytest.mark.asyncio
async def test_datasets_list(datasetio_settings):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
datasets_impl = datasetio_settings["datasets_impl"]
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 0
class TestDatasetIO:
@pytest.mark.asyncio
async def test_datasets_list(self, datasetio_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
_, datasets_impl = datasetio_stack
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 0
@pytest.mark.asyncio
async def test_register_dataset(self, datasetio_stack):
_, datasets_impl = datasetio_stack
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 1
assert response[0].identifier == "test_dataset"
@pytest.mark.asyncio
async def test_datasets_register(datasetio_settings):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
datasets_impl = datasetio_settings["datasets_impl"]
await register_dataset(datasets_impl)
@pytest.mark.asyncio
async def test_get_rows_paginated(self, datasetio_stack):
datasetio_impl, datasets_impl = datasetio_stack
await register_dataset(datasets_impl)
response = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 3
assert response.next_page_token == "3"
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 1
provider = datasetio_impl.routing_table.get_provider_impl("test_dataset")
if provider.__provider_spec__.provider_type == "remote":
pytest.skip("remote provider doesn't support get_rows_paginated")
# register same dataset with same id again will fail
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert isinstance(response, list)
assert len(response) == 1
assert response[0].identifier == "test_dataset"
@pytest.mark.asyncio
async def test_get_rows_paginated(datasetio_settings):
datasetio_impl = datasetio_settings["datasetio_impl"]
datasets_impl = datasetio_settings["datasets_impl"]
await register_dataset(datasets_impl)
response = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 3
assert response.next_page_token == "3"
# iterate over all rows
response = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=2,
page_token=response.next_page_token,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 2
assert response.next_page_token == "5"
# iterate over all rows
response = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=2,
page_token=response.next_page_token,
)
assert isinstance(response.rows, list)
assert len(response.rows) == 2
assert response.next_page_token == "5"

View file

@ -0,0 +1,72 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from ..conftest import get_provider_fixture_overrides
from ..datasetio.fixtures import DATASETIO_FIXTURES
from ..inference.fixtures import INFERENCE_FIXTURES
from ..scoring.fixtures import SCORING_FIXTURES
from .fixtures import EVAL_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"eval": "meta_reference",
"scoring": "meta_reference",
"datasetio": "meta_reference",
"inference": "fireworks",
},
id="meta_reference_eval_fireworks_inference",
marks=pytest.mark.meta_reference_eval_fireworks_inference,
),
pytest.param(
{
"eval": "meta_reference",
"scoring": "meta_reference",
"datasetio": "meta_reference",
"inference": "together",
},
id="meta_reference_eval_together_inference",
marks=pytest.mark.meta_reference_eval_together_inference,
),
]
def pytest_configure(config):
for fixture_name in [
"meta_reference_eval_fireworks_inference",
"meta_reference_eval_together_inference",
]:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
)
def pytest_addoption(parser):
parser.addoption(
"--inference-model",
action="store",
default="Llama3.2-3B-Instruct",
help="Specify the inference model to use for testing",
)
def pytest_generate_tests(metafunc):
if "eval_stack" in metafunc.fixturenames:
available_fixtures = {
"eval": EVAL_FIXTURES,
"scoring": SCORING_FIXTURES,
"datasetio": DATASETIO_FIXTURES,
"inference": INFERENCE_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("eval_stack", combinations, indirect=True)

View file

@ -0,0 +1,55 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
from ..conftest import ProviderFixture, remote_stack_fixture
@pytest.fixture(scope="session")
def eval_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def eval_meta_reference() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="meta-reference",
config={},
)
],
)
EVAL_FIXTURES = ["meta_reference", "remote"]
@pytest_asyncio.fixture(scope="session")
async def eval_stack(request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["datasetio", "eval", "scoring", "inference"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
impls = await resolve_impls_for_test_v2(
[Api.eval, Api.datasetio, Api.inference, Api.scoring],
providers,
provider_data,
)
return impls

View file

@ -1,22 +0,0 @@
providers:
datasetio:
- provider_id: test-meta
provider_type: meta-reference
config: {}
scoring:
- provider_id: test-meta
provider_type: meta-reference
config: {}
eval:
- provider_id: test-meta
provider_type: meta-reference
config: {}
inference:
- provider_id: test-tgi
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
- provider_id: test-tgi-2
provider_type: remote::tgi
config:
url: http://127.0.0.1:5010

View file

@ -3,81 +3,124 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.eval.eval import ModelCandidate
from llama_stack.distribution.datatypes import * # noqa: F403
import pytest
from llama_models.llama3.api import SamplingParams
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
EvalTaskDefWithProvider,
ModelCandidate,
)
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
from llama_stack.providers.tests.resolver import resolve_impls_for_test
# How to run this test:
#
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
# since it depends on the provider you are testing. On top of that you need
# `pytest` and `pytest-asyncio` installed.
#
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
#
# 3. Run:
#
# ```bash
# PROVIDER_ID=<your_provider> \
# PROVIDER_CONFIG=provider_config.yaml \
# pytest -s llama_stack/providers/tests/eval/test_eval.py \
# --tb=short --disable-warnings
# ```
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
@pytest_asyncio.fixture(scope="session")
async def eval_settings():
impls = await resolve_impls_for_test(
Api.eval, deps=[Api.datasetio, Api.scoring, Api.inference]
)
return {
"eval_impl": impls[Api.eval],
"scoring_impl": impls[Api.scoring],
"datasets_impl": impls[Api.datasets],
}
class Testeval:
@pytest.mark.asyncio
async def test_eval_tasks_list(self, eval_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
eval_tasks_impl = eval_stack[Api.eval_tasks]
response = await eval_tasks_impl.list_eval_tasks()
assert isinstance(response, list)
assert len(response) == 0
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasetio],
eval_stack[Api.datasets],
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
response = await datasets_impl.list_datasets()
assert len(response) == 1
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
@pytest.mark.asyncio
async def test_eval(eval_settings):
datasets_impl = eval_settings["datasets_impl"]
await register_dataset(
datasets_impl,
for_generation=True,
dataset_id="test_dataset_for_eval",
)
response = await datasets_impl.list_datasets()
assert len(response) == 1
eval_impl = eval_settings["eval_impl"]
response = await eval_impl.evaluate_batch(
dataset_id=response[0].identifier,
candidate=ModelCandidate(
model="Llama3.2-1B-Instruct",
sampling_params=SamplingParams(),
),
scoring_functions=[
"meta-reference::subset_of",
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
],
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(response.job_id)
"meta-reference::equality",
]
task_id = "meta-reference::app_eval"
task_def = EvalTaskDefWithProvider(
identifier=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
provider_id="meta-reference",
)
await eval_tasks_impl.register_eval_task(task_def)
assert job_status and job_status.value == "completed"
response = await eval_impl.evaluate_rows(
task_id=task_id,
input_rows=rows.rows,
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert len(response.generations) == 3
assert "meta-reference::llm_as_judge_8b_correctness" in response.scores
assert "meta-reference::equality" in response.scores
eval_response = await eval_impl.job_result(response.job_id)
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
eval_impl, eval_tasks_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
scoring_functions = [
"meta-reference::llm_as_judge_8b_correctness",
"meta-reference::subset_of",
]
task_id = "meta-reference::app_eval-2"
task_def = EvalTaskDefWithProvider(
identifier=task_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
provider_id="meta-reference",
)
await eval_tasks_impl.register_eval_task(task_def)
response = await eval_impl.run_eval(
task_id=task_id,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
),
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(task_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(task_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores

View file

@ -10,7 +10,7 @@ import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.meta_reference.inference import (
from llama_stack.providers.inline.inference.meta_reference import (
MetaReferenceInferenceConfig,
)
@ -64,6 +64,7 @@ def inference_ollama(inference_model) -> ProviderFixture:
inference_model = (
[inference_model] if isinstance(inference_model, str) else inference_model
)
print("!!!", inference_model)
if "Llama3.1-8B-Instruct" in inference_model:
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")

View file

@ -11,7 +11,7 @@ import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.meta_reference.memory import FaissImplConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig

View file

@ -8,7 +8,7 @@ import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.meta_reference.safety import (
from llama_stack.providers.inline.safety.meta_reference import (
LlamaGuardShieldConfig,
SafetyConfig,
)

View file

@ -0,0 +1,68 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from ..conftest import get_provider_fixture_overrides
from ..datasetio.fixtures import DATASETIO_FIXTURES
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import SCORING_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"scoring": "meta_reference",
"datasetio": "meta_reference",
"inference": "fireworks",
},
id="meta_reference_scoring_fireworks_inference",
marks=pytest.mark.meta_reference_scoring_fireworks_inference,
),
pytest.param(
{
"scoring": "meta_reference",
"datasetio": "meta_reference",
"inference": "together",
},
id="meta_reference_scoring_together_inference",
marks=pytest.mark.meta_reference_scoring_together_inference,
),
]
def pytest_configure(config):
for fixture_name in [
"meta_reference_scoring_fireworks_inference",
"meta_reference_scoring_together_inference",
]:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
)
def pytest_addoption(parser):
parser.addoption(
"--inference-model",
action="store",
default="Llama3.2-3B-Instruct",
help="Specify the inference model to use for testing",
)
def pytest_generate_tests(metafunc):
if "scoring_stack" in metafunc.fixturenames:
available_fixtures = {
"scoring": SCORING_FIXTURES,
"datasetio": DATASETIO_FIXTURES,
"inference": INFERENCE_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("scoring_stack", combinations, indirect=True)

View file

@ -0,0 +1,60 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.tests.resolver import resolve_impls_for_test_v2
from ..conftest import ProviderFixture, remote_stack_fixture
@pytest.fixture(scope="session")
def scoring_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def scoring_meta_reference() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="meta-reference",
provider_type="meta-reference",
config={},
)
],
)
SCORING_FIXTURES = ["meta_reference", "remote"]
@pytest_asyncio.fixture(scope="session")
async def scoring_stack(request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["datasetio", "scoring", "inference"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
impls = await resolve_impls_for_test_v2(
[Api.scoring, Api.datasetio, Api.inference],
providers,
provider_data,
)
return (
impls[Api.scoring],
impls[Api.scoring_functions],
impls[Api.datasetio],
impls[Api.datasets],
)

View file

@ -1,17 +0,0 @@
providers:
datasetio:
- provider_id: test-meta
provider_type: meta-reference
config: {}
scoring:
- provider_id: test-meta
provider_type: meta-reference
config: {}
- provider_id: test-braintrust
provider_type: braintrust
config: {}
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009

View file

@ -3,150 +3,109 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
import pytest_asyncio
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.distribution.datatypes import * # noqa: F403
import pytest
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
from llama_stack.providers.tests.resolver import resolve_impls_for_test
# How to run this test:
#
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
# since it depends on the provider you are testing. On top of that you need
# `pytest` and `pytest-asyncio` installed.
#
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
#
# 3. Run:
#
# ```bash
# PROVIDER_ID=<your_provider> \
# PROVIDER_CONFIG=provider_config.yaml \
# pytest -s llama_stack/providers/tests/scoring/test_scoring.py \
# --tb=short --disable-warnings
# ```
# pytest llama_stack/providers/tests/scoring/test_scoring.py
# -m "meta_reference"
# -v -s --tb=short --disable-warnings
@pytest_asyncio.fixture(scope="session")
async def scoring_settings():
impls = await resolve_impls_for_test(
Api.scoring, deps=[Api.datasetio, Api.inference]
)
return {
"scoring_impl": impls[Api.scoring],
"scoring_functions_impl": impls[Api.scoring_functions],
"datasets_impl": impls[Api.datasets],
}
class TestScoring:
@pytest.mark.asyncio
async def test_scoring_functions_list(self, scoring_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
_, scoring_functions_impl, _, _ = scoring_stack
response = await scoring_functions_impl.list_scoring_functions()
assert isinstance(response, list)
assert len(response) > 0
@pytest_asyncio.fixture(scope="session")
async def provider_scoring_functions():
return {
"meta-reference": {
"meta-reference::equality",
"meta-reference::subset_of",
"meta-reference::llm_as_judge_8b_correctness",
},
"braintrust": {
"braintrust::factuality",
"braintrust::answer-correctness",
},
}
@pytest.mark.asyncio
async def test_scoring_functions_list(scoring_settings, provider_scoring_functions):
scoring_impl = scoring_settings["scoring_impl"]
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
scoring_functions = await scoring_functions_impl.list_scoring_functions()
assert isinstance(scoring_functions, list)
assert len(scoring_functions) > 0
function_ids = [f.identifier for f in scoring_functions]
# get current provider_type we're testing
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
provider_type = provider.__provider_spec__.provider_type
for x in provider_scoring_functions[provider_type]:
assert x in function_ids
@pytest.mark.asyncio
async def test_scoring_functions_register(scoring_settings):
scoring_impl = scoring_settings["scoring_impl"]
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
datasets_impl = scoring_settings["datasets_impl"]
# get current provider_type we're testing
scoring_functions = await scoring_functions_impl.list_scoring_functions()
function_ids = [f.identifier for f in scoring_functions]
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
provider_type = provider.__provider_spec__.provider_type
if provider_type not in ("meta-reference"):
pytest.skip(
"Other scoring providers don't support registering scoring functions."
@pytest.mark.asyncio
async def test_scoring_score(self, scoring_stack):
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
scoring_stack
)
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert len(response) == 1
test_prompt = """Output a number between 0 to 10. Your answer must match the format \n Number: <answer>"""
# register the scoring function
await scoring_functions_impl.register_scoring_function(
ScoringFnDefWithProvider(
identifier="meta-reference::llm_as_judge_8b_random",
description="Llm As Judge Scoring Function",
parameters=[],
return_type=NumberType(),
context=LLMAsJudgeContext(
prompt_template=test_prompt,
judge_model="Llama3.1-8B-Instruct",
judge_score_regex=[r"Number: (\d+)"],
),
provider_id="test-meta",
# scoring individual rows
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
)
assert len(rows.rows) == 3
scoring_functions = await scoring_functions_impl.list_scoring_functions()
assert isinstance(scoring_functions, list)
assert len(scoring_functions) > 0
function_ids = [f.identifier for f in scoring_functions]
assert "meta-reference::llm_as_judge_8b_random" in function_ids
scoring_functions = {
"meta-reference::llm_as_judge_8b_correctness": None,
"meta-reference::equality": None,
}
response = await scoring_impl.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
# test score using newly registered scoring function
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert len(response) == 1
response = await scoring_impl.score_batch(
dataset_id=response[0].identifier,
scoring_functions=[
"meta-reference::llm_as_judge_8b_random",
],
)
assert "meta-reference::llm_as_judge_8b_random" in response.results
# score batch
response = await scoring_impl.score_batch(
dataset_id="test_dataset",
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == 5
@pytest.mark.asyncio
async def test_scoring_score_with_params(self, scoring_stack):
scoring_impl, scoring_functions_impl, datasetio_impl, datasets_impl = (
scoring_stack
)
await register_dataset(datasets_impl)
response = await datasets_impl.list_datasets()
assert len(response) == 1
@pytest.mark.asyncio
async def test_scoring_score(scoring_settings, provider_scoring_functions):
scoring_impl = scoring_settings["scoring_impl"]
datasets_impl = scoring_settings["datasets_impl"]
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
await register_dataset(datasets_impl)
# scoring individual rows
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert len(rows.rows) == 3
response = await datasets_impl.list_datasets()
assert len(response) == 1
scoring_functions = {
"meta-reference::llm_as_judge_8b_correctness": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
judge_score_regexes=[r"Score: (\d+)"],
)
}
# get current provider_type we're testing
scoring_functions = await scoring_functions_impl.list_scoring_functions()
function_ids = [f.identifier for f in scoring_functions]
provider = scoring_impl.routing_table.get_provider_impl(function_ids[0])
provider_type = provider.__provider_spec__.provider_type
response = await scoring_impl.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
response = await scoring_impl.score_batch(
dataset_id=response[0].identifier,
scoring_functions=list(provider_scoring_functions[provider_type]),
)
assert len(response.results) == len(provider_scoring_functions[provider_type])
for x in provider_scoring_functions[provider_type]:
assert x in response.results
# score batch
response = await scoring_impl.score_batch(
dataset_id="test_dataset",
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == 5