rename quant types to use _mixed naming

This commit is contained in:
Ashwin Bharambe 2025-04-07 12:57:58 -07:00
parent b239c57c54
commit 76004eacb4
3 changed files with 11 additions and 11 deletions

View file

@ -97,18 +97,18 @@ class QuantizationType(Enum):
"""Type of model quantization to run inference with.
:cvar bf16: BFloat16 typically this means _no_ quantization
:cvar fp8: 8-bit floating point quantization
:cvar int4: 4-bit integer quantization
:cvar fp8_mixed: 8-bit floating point quantization with mixed precision
:cvar int4_mixed: 4-bit integer quantization with mixed precision
"""
bf16 = "bf16"
fp8 = "fp8"
int4 = "int4"
fp8_mixed = "fp8_mixed"
int4_mixed = "int4_mixed"
@json_schema_type
class Fp8QuantizationConfig(BaseModel):
type: Literal["fp8"] = "fp8"
type: Literal["fp8_mixed"] = "fp8_mixed"
@json_schema_type
@ -124,7 +124,7 @@ class Int4QuantizationConfig(BaseModel):
:param scheme: Quantization scheme to use. Defaults to "int4_weight_int8_dynamic_activation"
"""
type: Literal["int4"] = "int4"
type: Literal["int4_mixed"] = "int4_mixed"
scheme: Optional[str] = "int4_weight_int8_dynamic_activation"

View file

@ -91,7 +91,7 @@ def convert_to_quantized_model(
log_status(f"Rank {rank}: Quantizing int4 weights from bf16")
def apply_quantization(_, weight):
return quantize_int4(weight, output_device=torch.device("cuda"))
return quantize_int4(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
else:
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt")

View file

@ -133,9 +133,9 @@ class Llama4Generator:
ckpt_dir = model_checkpoint_dir(resolved_model.descriptor())
if config.quantization:
if config.quantization.type == "fp8":
if config.quantization.type == "fp8_mixed":
quantization_mode = QuantizationMode.fp8_mixed
elif config.quantization.type == "int4":
elif config.quantization.type == "int4_mixed":
quantization_mode = QuantizationMode.int4_mixed
elif config.quantization.type == "bf16":
quantization_mode = None
@ -226,9 +226,9 @@ class Llama3Generator:
ckpt_dir = model_checkpoint_dir(resolved_model.descriptor())
if config.quantization:
if config.quantization.type == "fp8":
if config.quantization.type == "fp8_mixed":
quantization_mode = QuantizationMode.fp8_mixed
elif config.quantization.type == "int4":
elif config.quantization.type == "int4_mixed":
quantization_mode = QuantizationMode.int4_mixed
elif config.quantization.type == "bf16":
quantization_mode = None