mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-21 00:32:26 +00:00
Merge branch 'main' into pr2940
This commit is contained in:
commit
760295af50
229 changed files with 17933 additions and 7872 deletions
|
|
@ -65,7 +65,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import FireworksImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::fireworks")
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
|
|
|
|||
|
|
@ -3,20 +3,19 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import logging
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
RerankResponse,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = get_logger(name=__name__, category="inference::llama_openai_compat")
|
||||
|
||||
|
||||
class LlamaCompatInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
||||
|
|
|
|||
|
|
@ -41,6 +41,11 @@ client.initialize()
|
|||
|
||||
### Create Completion
|
||||
|
||||
> Note on Completion API
|
||||
>
|
||||
> The hosted NVIDIA Llama NIMs (e.g., `meta-llama/Llama-3.1-8B-Instruct`) with ```NVIDIA_BASE_URL="https://integrate.api.nvidia.com"``` does not support the ```completion``` method, while the locally deployed NIM does.
|
||||
|
||||
|
||||
```python
|
||||
response = client.inference.completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
|
|
@ -76,7 +81,78 @@ response = client.inference.chat_completion(
|
|||
print(f"Response: {response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Tool Calling Example ###
|
||||
```python
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
|
||||
tool_definition = ToolDefinition(
|
||||
tool_name="get_weather",
|
||||
description="Get current weather information for a location",
|
||||
parameters={
|
||||
"location": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="The city and state, e.g. San Francisco, CA",
|
||||
required=True,
|
||||
),
|
||||
"unit": ToolParamDefinition(
|
||||
param_type="string",
|
||||
description="Temperature unit (celsius or fahrenheit)",
|
||||
required=False,
|
||||
default="celsius",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
tool_response = client.inference.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
|
||||
tools=[tool_definition],
|
||||
)
|
||||
|
||||
print(f"Tool Response: {tool_response.completion_message.content}")
|
||||
if tool_response.completion_message.tool_calls:
|
||||
for tool_call in tool_response.completion_message.tool_calls:
|
||||
print(f"Tool Called: {tool_call.tool_name}")
|
||||
print(f"Arguments: {tool_call.arguments}")
|
||||
```
|
||||
|
||||
### Structured Output Example
|
||||
```python
|
||||
from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType
|
||||
|
||||
person_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "integer"},
|
||||
"occupation": {"type": "string"},
|
||||
},
|
||||
"required": ["name", "age", "occupation"],
|
||||
}
|
||||
|
||||
response_format = JsonSchemaResponseFormat(
|
||||
type=ResponseFormatType.json_schema, json_schema=person_schema
|
||||
)
|
||||
|
||||
structured_response = client.inference.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8B-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ",
|
||||
}
|
||||
],
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
print(f"Structured Response: {structured_response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Create Embeddings
|
||||
> Note on OpenAI embeddings compatibility
|
||||
>
|
||||
> NVIDIA asymmetric embedding models (e.g., `nvidia/llama-3.2-nv-embedqa-1b-v2`) require an `input_type` parameter not present in the standard OpenAI embeddings API. The NVIDIA Inference Adapter automatically sets `input_type="query"` when using the OpenAI-compatible embeddings endpoint for NVIDIA. For passage embeddings, use the `embeddings` API with `task_type="document"`.
|
||||
|
||||
```python
|
||||
response = client.inference.embeddings(
|
||||
model_id="nvidia/llama-3.2-nv-embedqa-1b-v2",
|
||||
|
|
|
|||
|
|
@ -4,11 +4,10 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
import warnings
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from openai import APIConnectionError, BadRequestError
|
||||
from openai import NOT_GIVEN, APIConnectionError
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
|
@ -27,12 +26,16 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
TextTruncation,
|
||||
ToolChoice,
|
||||
ToolConfig,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
|
|
@ -54,7 +57,7 @@ from .openai_utils import (
|
|||
)
|
||||
from .utils import _is_nvidia_hosted
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = get_logger(name=__name__, category="inference::nvidia")
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
||||
|
|
@ -194,15 +197,11 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
}
|
||||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
except BadRequestError as e:
|
||||
raise ValueError(f"Failed to get embeddings: {e}") from e
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...)
|
||||
# ->
|
||||
|
|
@ -210,6 +209,57 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper):
|
|||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
"""
|
||||
OpenAI-compatible embeddings for NVIDIA NIM.
|
||||
|
||||
Note: NVIDIA NIM asymmetric embedding models require an "input_type" field not present in the standard OpenAI embeddings API.
|
||||
We default this to "query" to ensure requests succeed when using the
|
||||
OpenAI-compatible endpoint. For passage embeddings, use the embeddings API with
|
||||
`task_type='document'`.
|
||||
"""
|
||||
extra_body: dict[str, object] = {"input_type": "query"}
|
||||
logger.warning(
|
||||
"NVIDIA OpenAI-compatible embeddings: defaulting to input_type='query'. "
|
||||
"For passage embeddings, use the embeddings API with task_type='document'."
|
||||
)
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
|
||||
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
|
||||
user=user if user is not None else NOT_GIVEN,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
data = []
|
||||
for i, embedding_data in enumerate(response.data):
|
||||
data.append(
|
||||
OpenAIEmbeddingData(
|
||||
embedding=embedding_data.embedding,
|
||||
index=i,
|
||||
)
|
||||
)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=response.model,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
|||
|
|
@ -4,13 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
|
||||
import httpx
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from . import NVIDIAConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = get_logger(name=__name__, category="inference::nvidia")
|
||||
|
||||
|
||||
def _is_nvidia_hosted(config: NVIDIAConfig) -> bool:
|
||||
|
|
|
|||
|
|
@ -88,7 +88,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::ollama")
|
||||
|
||||
|
||||
class OllamaInferenceAdapter(
|
||||
|
|
|
|||
|
|
@ -4,15 +4,14 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
from .config import OpenAIConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = get_logger(name=__name__, category="inference::openai")
|
||||
|
||||
|
||||
#
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import logging
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
|
|
@ -34,6 +33,7 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
|
|
@ -58,7 +58,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log = get_logger(name=__name__, category="inference::tgi")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from .config import TogetherImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
|
|
|
|||
|
|
@ -88,7 +88,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
log = get_logger(name=__name__, category="inference::vllm")
|
||||
|
||||
|
||||
def build_hf_repo_model_entries():
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue