mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
tab based
This commit is contained in:
parent
18d175e703
commit
76fac04e4f
1 changed files with 86 additions and 3 deletions
|
@ -50,11 +50,11 @@ If so, we suggest:
|
|||
|
||||
The following quick starts commands. Please visit each distribution page on detailed setup.
|
||||
|
||||
##### 0. Prerequisite
|
||||
##### 1.0 Prerequisite
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} meta-reference-gpu
|
||||
**Downloading Models**
|
||||
##### Downloading Models
|
||||
Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/cli_reference/download_models.html) here to download the models.
|
||||
|
||||
```
|
||||
|
@ -65,11 +65,94 @@ Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-
|
|||
:::
|
||||
|
||||
:::{tab-item} tgi
|
||||
Single-Node GPU
|
||||
This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
##### 1.1. Start the distribution
|
||||
|
||||
**Via Docker**
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} meta-reference-gpu
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu && docker compose up
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a local server with access to your GPU.
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} tgi
|
||||
```
|
||||
$ cd distributions/tgi/gpu && docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
**Via Conda**
|
||||
::::{tab-set}
|
||||
|
||||
:::{tab-item} meta-reference-gpu
|
||||
1. Install the `llama` CLI. See [CLI Reference](https://llama-stack.readthedocs.io/en/latest/cli_reference/index.html)
|
||||
|
||||
2. Build the `meta-reference-gpu` distribution
|
||||
|
||||
```
|
||||
$ llama stack build --template meta-reference-gpu --image-type conda
|
||||
```
|
||||
|
||||
3. Start running distribution
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu
|
||||
$ llama stack run ./run.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
:::{tab-item} tgi
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
::::
|
||||
|
||||
|
||||
##### 1.2 (Optional) Serving Model
|
||||
|
||||
|
||||
|
||||
## Step 2. Build Your Llama Stack App
|
||||
|
||||
### chat_completion sanity test
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue