mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
Merge 376eb94def
into d266c59c2a
This commit is contained in:
commit
7774d9e9f3
80 changed files with 32197 additions and 186 deletions
|
@ -55,11 +55,11 @@ class SentenceTransformersInferenceImpl(
|
|||
async def list_models(self) -> list[Model] | None:
|
||||
return [
|
||||
Model(
|
||||
identifier="all-MiniLM-L6-v2",
|
||||
provider_resource_id="all-MiniLM-L6-v2",
|
||||
identifier="nomic-ai/nomic-embed-text-v1.5",
|
||||
provider_resource_id="nomic-ai/nomic-embed-text-v1.5",
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={
|
||||
"embedding_dimension": 384,
|
||||
"embedding_dimension": 768,
|
||||
},
|
||||
model_type=ModelType.embedding,
|
||||
),
|
||||
|
|
|
@ -43,6 +43,12 @@ def available_providers() -> list[ProviderSpec]:
|
|||
pip_packages=[
|
||||
"torch torchvision torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu",
|
||||
"sentence-transformers --no-deps",
|
||||
# required by some SentenceTransformers architectures for tensor rearrange/merge ops
|
||||
"einops",
|
||||
# fast HF tokenization backend used by SentenceTransformers models
|
||||
"tokenizers",
|
||||
# safe and fast file format for storing and loading tensors
|
||||
"safetensors",
|
||||
],
|
||||
module="llama_stack.providers.inline.inference.sentence_transformers",
|
||||
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
|
||||
|
|
|
@ -86,7 +86,7 @@ class SentenceTransformerEmbeddingMixin:
|
|||
def _load_model():
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
return SentenceTransformer(model)
|
||||
return SentenceTransformer(model, trust_remote_code=True)
|
||||
|
||||
loaded_model = await asyncio.to_thread(_load_model)
|
||||
EMBEDDING_MODELS[model] = loaded_model
|
||||
|
|
|
@ -203,7 +203,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
embedding_dimension: int | None = 768,
|
||||
provider_id: str | None = None,
|
||||
provider_vector_db_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
|
@ -218,7 +218,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
if embedding_model is None:
|
||||
raise ValueError("Embedding model is required")
|
||||
|
||||
# Embedding dimension is required (defaulted to 384 if not provided)
|
||||
# Embedding dimension is required (defaulted to 768 if not provided)
|
||||
if embedding_dimension is None:
|
||||
raise ValueError("Embedding dimension is required")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue