mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
registration answer parsing
This commit is contained in:
parent
f1a2548ad5
commit
779e66f83f
10 changed files with 178 additions and 45 deletions
|
@ -4,7 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Protocol,
|
||||
runtime_checkable,
|
||||
Union,
|
||||
)
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel, Field
|
||||
|
@ -42,7 +51,7 @@ class AnswerParsingContext(BaseModel):
|
|||
ScoringContextType.answer_parsing.value
|
||||
)
|
||||
parsing_regex: Optional[List[str]] = Field(
|
||||
"Regex to extract the answer from generated response",
|
||||
description="Regex to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
@ -67,7 +76,10 @@ class ScoringFnDef(BaseModel):
|
|||
return_type: ParamType = Field(
|
||||
description="The return type of the deterministic function",
|
||||
)
|
||||
context: Optional[ScoringContext] = None
|
||||
context: Optional[ScoringContext] = Field(
|
||||
description="Scoring function context used different answer extraction",
|
||||
default=None,
|
||||
)
|
||||
# We can optionally add information here to support packaging of code, etc.
|
||||
|
||||
|
||||
|
|
|
@ -13,23 +13,20 @@ from llama_stack.apis.datasetio import * # noqa: F403
|
|||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
|
||||
EqualityScoringFn,
|
||||
)
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
|
||||
LlmAsJudgeScoringFn,
|
||||
)
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
|
||||
SubsetOfScoringFn,
|
||||
)
|
||||
|
||||
from .config import MetaReferenceScoringConfig
|
||||
from .scoring_fn.answer_parsing_scoring_fn import AnswerParsingScoringFn
|
||||
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
|
||||
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
|
||||
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
|
||||
|
||||
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn]
|
||||
|
||||
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
|
||||
# Scoring functions with context that can be registered
|
||||
REGISTERABLE_SCORING_FNS = {
|
||||
ScoringContextType.llm_as_judge.value: LlmAsJudgeScoringFn,
|
||||
ScoringContextType.answer_parsing.value: AnswerParsingScoringFn,
|
||||
}
|
||||
|
||||
|
||||
class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||
|
@ -44,18 +41,24 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.inference_api = inference_api
|
||||
# keep track of scoring function id to impls
|
||||
self.scoring_fn_id_impls = {}
|
||||
# registerable scoring fn context to impls
|
||||
self.registerable_scoring_fn_impls = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
for x in FIXED_FNS:
|
||||
impl = x()
|
||||
for fn_defs in impl.get_supported_scoring_fn_defs():
|
||||
self.scoring_fn_id_impls[fn_defs.identifier] = impl
|
||||
for x in LLM_JUDGE_FNS:
|
||||
impl = x(inference_api=self.inference_api)
|
||||
for context_type, impl_cls in REGISTERABLE_SCORING_FNS.items():
|
||||
if context_type == ScoringContextType.llm_as_judge.value:
|
||||
impl = impl_cls(inference_api=self.inference_api)
|
||||
else:
|
||||
impl = impl_cls()
|
||||
for fn_defs in impl.get_supported_scoring_fn_defs():
|
||||
self.scoring_fn_id_impls[fn_defs.identifier] = impl
|
||||
self.llm_as_judge_fn = impl
|
||||
self.registerable_scoring_fn_impls[context_type] = impl
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
|
@ -74,8 +77,12 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
return scoring_fn_defs_list
|
||||
|
||||
async def register_scoring_function(self, function_def: ScoringFnDef) -> None:
|
||||
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
|
||||
self.scoring_fn_id_impls[function_def.identifier] = self.llm_as_judge_fn
|
||||
assert (
|
||||
function_def.context is not None
|
||||
), "Only ScoringFnDef with context set can be registered"
|
||||
fn_impl = self.registerable_scoring_fn_impls[function_def.context.type]
|
||||
fn_impl.register_scoring_fn_def(function_def)
|
||||
self.scoring_fn_id_impls[function_def.identifier] = fn_impl
|
||||
|
||||
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from .base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from .common import aggregate_accuracy
|
||||
|
||||
from .fn_defs.answer_parsing_multiple_choice import answer_parsing_multiple_choice
|
||||
|
||||
|
||||
class AnswerParsingScoringFn(BaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that parses answer from generated response according to context and check match with expected_answer.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
self.supported_fn_defs_registry = {
|
||||
answer_parsing_multiple_choice.identifier: answer_parsing_multiple_choice,
|
||||
}
|
||||
|
||||
async def score_row(
|
||||
self,
|
||||
input_row: Dict[str, Any],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
) -> ScoringResultRow:
|
||||
assert (
|
||||
scoring_fn_identifier is not None
|
||||
), "Scoring function identifier not found."
|
||||
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
|
||||
assert (
|
||||
fn_def.context is not None
|
||||
and fn_def.context.type == ScoringContextType.answer_parsing.value
|
||||
), f"AnswerParsingContext not found for {fn_def}."
|
||||
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
||||
# parse answer according to regex
|
||||
parsed_answer = None
|
||||
for regex in fn_def.context.parsing_regex:
|
||||
match = re.search(regex, generated_answer)
|
||||
if match:
|
||||
parsed_answer = match.group(1)
|
||||
break
|
||||
|
||||
score = 1.0 if parsed_answer and parsed_answer == expected_answer else 0.0
|
||||
return {
|
||||
"score": score,
|
||||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
|
@ -15,9 +15,7 @@ from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import
|
|||
aggregate_accuracy,
|
||||
)
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.equality import (
|
||||
equality,
|
||||
)
|
||||
from .fn_defs.equality import equality
|
||||
|
||||
|
||||
class EqualityScoringFn(BaseScoringFn):
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
|
||||
MULTILINGUAL_ANSWER_REGEXES = [
|
||||
r"Answer\s*:",
|
||||
r"Answer\s*:", # Korean invisible character
|
||||
r"উত্তর\s*:",
|
||||
r"उत्तर\s*:",
|
||||
r"উত্তরঃ",
|
||||
r"উত্তর\s*:",
|
||||
r"Antwort\s*:",
|
||||
r"답변\s*:",
|
||||
r"정답\s*:",
|
||||
r"답\s*:",
|
||||
r"答案\s*:",
|
||||
r"答案\s*:",
|
||||
r"答\s*:",
|
||||
r"答\s*:",
|
||||
r"答复\s*:",
|
||||
r"答曰\s*:",
|
||||
r"الإجابة:",
|
||||
r"الجواب:",
|
||||
r"إجابة:",
|
||||
r"الإجابة النهائية:",
|
||||
r"الإجابة الصحيحة:",
|
||||
r"الإجابة الصحيحة هي:",
|
||||
r"الإجابة هي:",
|
||||
r"Respuesta\s*:",
|
||||
r"Risposta\s*:",
|
||||
r"答え\s*:",
|
||||
r"答え\s*:",
|
||||
r"回答\s*:",
|
||||
r"回答\s*:",
|
||||
r"解答\s*:",
|
||||
r"Jawaban\s*:",
|
||||
r"Réponse\s*:",
|
||||
r"Resposta\s*:",
|
||||
r"Jibu\s*:",
|
||||
r"Idahun\s*:",
|
||||
r"Ìdáhùn\s*:",
|
||||
r"Idáhùn\s*:",
|
||||
r"Àmọ̀nà\s*:",
|
||||
r"Àdáhùn\s*:",
|
||||
r"Ànúgọ\s*:",
|
||||
r"Àṣàyàn\s*:",
|
||||
]
|
||||
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
|
||||
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[A]|[B]|[C]|[D])"
|
||||
)
|
||||
|
||||
answer_parsing_multiple_choice = ScoringFnDef(
|
||||
identifier="meta-reference::answer_parsing_multiple_choice",
|
||||
description="Extract answer from response matching Answer: [the_answer_letter], and compare with expected result",
|
||||
return_type=NumberType(),
|
||||
context=AnswerParsingContext(
|
||||
parsing_regex=[
|
||||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
|
||||
for x in MULTILINGUAL_ANSWER_REGEXES
|
||||
],
|
||||
),
|
||||
)
|
|
@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
|
|||
equality = ScoringFnDef(
|
||||
identifier="meta-reference::equality",
|
||||
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
|
||||
parameters=[],
|
||||
return_type=NumberType(),
|
||||
)
|
||||
|
|
|
@ -26,7 +26,6 @@ Total rating:
|
|||
llm_as_judge_8b_correctness = ScoringFnDef(
|
||||
identifier="meta-reference::llm_as_judge_8b_correctness",
|
||||
description="Llm As Judge Scoring Function",
|
||||
parameters=[],
|
||||
return_type=NumberType(),
|
||||
context=LLMAsJudgeContext(
|
||||
prompt_template=JUDGE_PROMPT,
|
||||
|
|
|
@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
|
|||
subset_of = ScoringFnDef(
|
||||
identifier="meta-reference::subset_of",
|
||||
description="Returns 1.0 if the expected is included in generated, 0.0 otherwise.",
|
||||
parameters=[],
|
||||
return_type=NumberType(),
|
||||
)
|
||||
|
|
|
@ -4,25 +4,20 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
|
||||
BaseScoringFn,
|
||||
)
|
||||
|
||||
from .base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
import re
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
|
||||
aggregate_average,
|
||||
)
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.llm_as_judge_8b_correctness import (
|
||||
llm_as_judge_8b_correctness,
|
||||
)
|
||||
from .common import aggregate_average
|
||||
from .fn_defs.llm_as_judge_8b_correctness import llm_as_judge_8b_correctness
|
||||
|
||||
|
||||
class LlmAsJudgeScoringFn(BaseScoringFn):
|
||||
"""
|
||||
A scoring_fn that assigns
|
||||
A scoring_fn using LLM as Judge to produce score
|
||||
"""
|
||||
|
||||
def __init__(self, inference_api: Inference, *arg, **kwargs) -> None:
|
||||
|
|
|
@ -4,19 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
|
||||
BaseScoringFn,
|
||||
)
|
||||
from .base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
|
||||
aggregate_accuracy,
|
||||
)
|
||||
from .common import aggregate_accuracy
|
||||
|
||||
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.subset_of import (
|
||||
subset_of,
|
||||
)
|
||||
from .fn_defs.subset_of import subset_of
|
||||
|
||||
|
||||
class SubsetOfScoringFn(BaseScoringFn):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue