registration answer parsing

This commit is contained in:
Xi Yan 2024-10-31 16:44:02 -07:00
parent f1a2548ad5
commit 779e66f83f
10 changed files with 178 additions and 45 deletions

View file

@ -4,7 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from typing import (
Any,
Dict,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
@ -42,7 +51,7 @@ class AnswerParsingContext(BaseModel):
ScoringContextType.answer_parsing.value
)
parsing_regex: Optional[List[str]] = Field(
"Regex to extract the answer from generated response",
description="Regex to extract the answer from generated response",
default_factory=list,
)
@ -67,7 +76,10 @@ class ScoringFnDef(BaseModel):
return_type: ParamType = Field(
description="The return type of the deterministic function",
)
context: Optional[ScoringContext] = None
context: Optional[ScoringContext] = Field(
description="Scoring function context used different answer extraction",
default=None,
)
# We can optionally add information here to support packaging of code, etc.

View file

@ -13,23 +13,20 @@ from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.inference.inference import Inference
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
EqualityScoringFn,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
LlmAsJudgeScoringFn,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
SubsetOfScoringFn,
)
from .config import MetaReferenceScoringConfig
from .scoring_fn.answer_parsing_scoring_fn import AnswerParsingScoringFn
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn]
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]
# Scoring functions with context that can be registered
REGISTERABLE_SCORING_FNS = {
ScoringContextType.llm_as_judge.value: LlmAsJudgeScoringFn,
ScoringContextType.answer_parsing.value: AnswerParsingScoringFn,
}
class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
@ -44,18 +41,24 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.inference_api = inference_api
# keep track of scoring function id to impls
self.scoring_fn_id_impls = {}
# registerable scoring fn context to impls
self.registerable_scoring_fn_impls = {}
async def initialize(self) -> None:
for x in FIXED_FNS:
impl = x()
for fn_defs in impl.get_supported_scoring_fn_defs():
self.scoring_fn_id_impls[fn_defs.identifier] = impl
for x in LLM_JUDGE_FNS:
impl = x(inference_api=self.inference_api)
for context_type, impl_cls in REGISTERABLE_SCORING_FNS.items():
if context_type == ScoringContextType.llm_as_judge.value:
impl = impl_cls(inference_api=self.inference_api)
else:
impl = impl_cls()
for fn_defs in impl.get_supported_scoring_fn_defs():
self.scoring_fn_id_impls[fn_defs.identifier] = impl
self.llm_as_judge_fn = impl
self.registerable_scoring_fn_impls[context_type] = impl
async def shutdown(self) -> None: ...
@ -74,8 +77,12 @@ class MetaReferenceScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
return scoring_fn_defs_list
async def register_scoring_function(self, function_def: ScoringFnDef) -> None:
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
self.scoring_fn_id_impls[function_def.identifier] = self.llm_as_judge_fn
assert (
function_def.context is not None
), "Only ScoringFnDef with context set can be registered"
fn_impl = self.registerable_scoring_fn_impls[function_def.context.type]
fn_impl.register_scoring_fn_def(function_def)
self.scoring_fn_id_impls[function_def.identifier] = fn_impl
async def validate_scoring_input_dataset_schema(self, dataset_id: str) -> None:
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)

View file

@ -0,0 +1,61 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from .base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from .common import aggregate_accuracy
from .fn_defs.answer_parsing_multiple_choice import answer_parsing_multiple_choice
class AnswerParsingScoringFn(BaseScoringFn):
"""
A scoring_fn that parses answer from generated response according to context and check match with expected_answer.
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
answer_parsing_multiple_choice.identifier: answer_parsing_multiple_choice,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
) -> ScoringResultRow:
assert (
scoring_fn_identifier is not None
), "Scoring function identifier not found."
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
assert (
fn_def.context is not None
and fn_def.context.type == ScoringContextType.answer_parsing.value
), f"AnswerParsingContext not found for {fn_def}."
expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"]
# parse answer according to regex
parsed_answer = None
for regex in fn_def.context.parsing_regex:
match = re.search(regex, generated_answer)
if match:
parsed_answer = match.group(1)
break
score = 1.0 if parsed_answer and parsed_answer == expected_answer else 0.0
return {
"score": score,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
return aggregate_accuracy(scoring_results)

View file

@ -15,9 +15,7 @@ from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import
aggregate_accuracy,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.equality import (
equality,
)
from .fn_defs.equality import equality
class EqualityScoringFn(BaseScoringFn):

View file

@ -0,0 +1,69 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import NumberType
MULTILINGUAL_ANSWER_REGEXES = [
r"Answer\s*:",
r"Answer\s*:", # Korean invisible character
r"উত্তর\s*:",
r"उत्तर\s*:",
r"উত্তরঃ",
r"উত্তর\s*:",
r"Antwort\s*:",
r"답변\s*:",
r"정답\s*:",
r"\s*:",
r"答案\s*",
r"答案\s*:",
r"\s*",
r"\s*:",
r"答复\s*",
r"答曰\s*",
r"الإجابة:",
r"الجواب:",
r"إجابة:",
r"الإجابة النهائية:",
r"الإجابة الصحيحة:",
r"الإجابة الصحيحة هي:",
r"الإجابة هي:",
r"Respuesta\s*:",
r"Risposta\s*:",
r"答え\s*:",
r"答え\s*",
r"回答\s*:",
r"回答\s*",
r"解答\s*:",
r"Jawaban\s*:",
r"Réponse\s*:",
r"Resposta\s*:",
r"Jibu\s*:",
r"Idahun\s*:",
r"Ìdáhùn\s*:",
r"Idáhùn\s*:",
r"Àmọ̀nà\s*:",
r"Àdáhùn\s*:",
r"Ànúgọ\s*:",
r"Àṣàyàn\s*:",
]
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[]|[]|[]|[])"
)
answer_parsing_multiple_choice = ScoringFnDef(
identifier="meta-reference::answer_parsing_multiple_choice",
description="Extract answer from response matching Answer: [the_answer_letter], and compare with expected result",
return_type=NumberType(),
context=AnswerParsingContext(
parsing_regex=[
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
for x in MULTILINGUAL_ANSWER_REGEXES
],
),
)

View file

@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
equality = ScoringFnDef(
identifier="meta-reference::equality",
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
parameters=[],
return_type=NumberType(),
)

View file

@ -26,7 +26,6 @@ Total rating:
llm_as_judge_8b_correctness = ScoringFnDef(
identifier="meta-reference::llm_as_judge_8b_correctness",
description="Llm As Judge Scoring Function",
parameters=[],
return_type=NumberType(),
context=LLMAsJudgeContext(
prompt_template=JUDGE_PROMPT,

View file

@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
subset_of = ScoringFnDef(
identifier="meta-reference::subset_of",
description="Returns 1.0 if the expected is included in generated, 0.0 otherwise.",
parameters=[],
return_type=NumberType(),
)

View file

@ -4,25 +4,20 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference.inference import Inference
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
BaseScoringFn,
)
from .base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
import re
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
aggregate_average,
)
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.llm_as_judge_8b_correctness import (
llm_as_judge_8b_correctness,
)
from .common import aggregate_average
from .fn_defs.llm_as_judge_8b_correctness import llm_as_judge_8b_correctness
class LlmAsJudgeScoringFn(BaseScoringFn):
"""
A scoring_fn that assigns
A scoring_fn using LLM as Judge to produce score
"""
def __init__(self, inference_api: Inference, *arg, **kwargs) -> None:

View file

@ -4,19 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.base_scoring_fn import (
BaseScoringFn,
)
from .base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.common import (
aggregate_accuracy,
)
from .common import aggregate_accuracy
from llama_stack.providers.impls.meta_reference.scoring.scoring_fn.fn_defs.subset_of import (
subset_of,
)
from .fn_defs.subset_of import subset_of
class SubsetOfScoringFn(BaseScoringFn):