metrics for completion API

This commit is contained in:
Dinesh Yeduguru 2025-02-05 10:54:08 -08:00
parent e9bb96334b
commit 77c2418a9c

View file

@ -168,6 +168,37 @@ class InferenceRouter(Inference):
)
)
async def _add_token_metrics(
self,
prompt_tokens: int,
completion_tokens: int,
total_tokens: int,
model: Model,
target: Any,
) -> None:
metrics = getattr(target, "metrics", None)
if metrics is None:
target.metrics = []
target.metrics.append(
TokenUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
)
if self.telemetry:
await self._log_token_usage(prompt_tokens, completion_tokens, total_tokens, model)
async def _count_tokens(
self,
messages: Union[List[Message], List[RawMessage]],
tool_prompt_format: Optional[ToolPromptFormat] = None,
) -> Optional[int]:
if not self.telemetry:
return None
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
return len(encoded.tokens) if encoded and encoded.tokens else 0
async def chat_completion(
self,
model_id: str,
@ -227,60 +258,46 @@ class InferenceRouter(Inference):
tool_config=tool_config,
)
provider = self.routing_table.get_provider_impl(model_id)
model_input = self.formatter.encode_dialog_prompt(
messages,
tool_config.tool_prompt_format,
)
prompt_tokens = await self._count_tokens(messages, tool_config.tool_prompt_format)
if stream:
async def stream_generator():
prompt_tokens = len(model_input.tokens) if model_input.tokens else 0
completion_text = ""
async for chunk in await provider.chat_completion(**params):
if chunk.event.event_type == ChatCompletionResponseEventType.progress:
if chunk.event.delta.type == "text":
completion_text += chunk.event.delta.text
if chunk.event.event_type == ChatCompletionResponseEventType.complete:
model_output = self.formatter.encode_dialog_prompt(
completion_tokens = await self._count_tokens(
[RawMessage(role="assistant", content=completion_text)],
tool_config.tool_prompt_format,
)
completion_tokens = len(model_output.tokens) if model_output.tokens else 0
total_tokens = prompt_tokens + completion_tokens
if chunk.metrics is None:
chunk.metrics = []
chunk.metrics.append(
TokenUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
await self._add_token_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
chunk,
)
if self.telemetry:
await self._log_token_usage(prompt_tokens, completion_tokens, total_tokens, model)
yield chunk
return stream_generator()
else:
response = await provider.chat_completion(**params)
model_output = self.formatter.encode_dialog_prompt(
completion_tokens = await self._count_tokens(
[response.completion_message],
tool_config.tool_prompt_format,
)
prompt_tokens = len(model_input.tokens) if model_input.tokens else 0
completion_tokens = len(model_output.tokens) if model_output.tokens else 0
total_tokens = prompt_tokens + completion_tokens
if response.metrics is None:
response.metrics = []
response.metrics.append(
TokenUsage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
await self._add_token_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
response,
)
if self.telemetry:
await self._log_token_usage(prompt_tokens, completion_tokens, total_tokens, model)
return response
async def completion(
@ -306,10 +323,43 @@ class InferenceRouter(Inference):
stream=stream,
logprobs=logprobs,
)
prompt_tokens = await self._count_tokens([RawMessage(role="user", content=str(content))])
if stream:
return (chunk async for chunk in await provider.completion(**params))
async def stream_generator():
completion_text = ""
async for chunk in await provider.completion(**params):
if hasattr(chunk, "delta"):
completion_text += chunk.delta
if hasattr(chunk, "stop_reason") and chunk.stop_reason and self.telemetry:
completion_tokens = await self._count_tokens(
[RawMessage(role="assistant", content=completion_text)]
)
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
await self._add_token_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
chunk,
)
yield chunk
return stream_generator()
else:
return await provider.completion(**params)
response = await provider.completion(**params)
completion_tokens = await self._count_tokens([RawMessage(role="assistant", content=str(response.content))])
total_tokens = (prompt_tokens or 0) + (completion_tokens or 0)
await self._add_token_metrics(
prompt_tokens or 0,
completion_tokens or 0,
total_tokens,
model,
response,
)
return response
async def embeddings(
self,