[memory refactor][2/n] Update faiss and make it pass tests (#830)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Second part:

- updates routing table / router code 
- updates the faiss implementation


## Test Plan

```
pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384
```
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:02:15 -08:00 committed by GitHub
parent 3ae8585b65
commit 78a481bb22
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 343 additions and 353 deletions

View file

@ -14,11 +14,11 @@ from llama_stack.providers.datatypes import Api, RoutingTable
from .routing_tables import ( from .routing_tables import (
DatasetsRoutingTable, DatasetsRoutingTable,
EvalTasksRoutingTable, EvalTasksRoutingTable,
MemoryBanksRoutingTable,
ModelsRoutingTable, ModelsRoutingTable,
ScoringFunctionsRoutingTable, ScoringFunctionsRoutingTable,
ShieldsRoutingTable, ShieldsRoutingTable,
ToolGroupsRoutingTable, ToolGroupsRoutingTable,
VectorDBsRoutingTable,
) )
@ -29,7 +29,7 @@ async def get_routing_table_impl(
dist_registry: DistributionRegistry, dist_registry: DistributionRegistry,
) -> Any: ) -> Any:
api_to_tables = { api_to_tables = {
"memory_banks": MemoryBanksRoutingTable, "vector_dbs": VectorDBsRoutingTable,
"models": ModelsRoutingTable, "models": ModelsRoutingTable,
"shields": ShieldsRoutingTable, "shields": ShieldsRoutingTable,
"datasets": DatasetsRoutingTable, "datasets": DatasetsRoutingTable,
@ -51,14 +51,14 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, _deps) ->
DatasetIORouter, DatasetIORouter,
EvalRouter, EvalRouter,
InferenceRouter, InferenceRouter,
MemoryRouter,
SafetyRouter, SafetyRouter,
ScoringRouter, ScoringRouter,
ToolRuntimeRouter, ToolRuntimeRouter,
VectorIORouter,
) )
api_to_routers = { api_to_routers = {
"memory": MemoryRouter, "vector_io": VectorIORouter,
"inference": InferenceRouter, "inference": InferenceRouter,
"safety": SafetyRouter, "safety": SafetyRouter,
"datasetio": DatasetIORouter, "datasetio": DatasetIORouter,

View file

@ -27,8 +27,6 @@ from llama_stack.apis.inference import (
ToolDefinition, ToolDefinition,
ToolPromptFormat, ToolPromptFormat,
) )
from llama_stack.apis.memory import Memory, MemoryBankDocument, QueryDocumentsResponse
from llama_stack.apis.memory_banks.memory_banks import BankParams
from llama_stack.apis.models import ModelType from llama_stack.apis.models import ModelType
from llama_stack.apis.safety import RunShieldResponse, Safety from llama_stack.apis.safety import RunShieldResponse, Safety
from llama_stack.apis.scoring import ( from llama_stack.apis.scoring import (
@ -39,11 +37,12 @@ from llama_stack.apis.scoring import (
) )
from llama_stack.apis.shields import Shield from llama_stack.apis.shields import Shield
from llama_stack.apis.tools import ToolDef, ToolRuntime from llama_stack.apis.tools import ToolDef, ToolRuntime
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.providers.datatypes import RoutingTable from llama_stack.providers.datatypes import RoutingTable
class MemoryRouter(Memory): class VectorIORouter(VectorIO):
"""Routes to an provider based on the memory bank identifier""" """Routes to an provider based on the vector db identifier"""
def __init__( def __init__(
self, self,
@ -57,38 +56,40 @@ class MemoryRouter(Memory):
async def shutdown(self) -> None: async def shutdown(self) -> None:
pass pass
async def register_memory_bank( async def register_vector_db(
self, self,
memory_bank_id: str, vector_db_id: str,
params: BankParams, embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None, provider_id: Optional[str] = None,
provider_memorybank_id: Optional[str] = None, provider_vector_db_id: Optional[str] = None,
) -> None: ) -> None:
await self.routing_table.register_memory_bank( await self.routing_table.register_vector_db(
memory_bank_id, vector_db_id,
params, embedding_model,
embedding_dimension,
provider_id, provider_id,
provider_memorybank_id, provider_vector_db_id,
) )
async def insert_documents( async def insert_chunks(
self, self,
bank_id: str, vector_db_id: str,
documents: List[MemoryBankDocument], chunks: List[Chunk],
ttl_seconds: Optional[int] = None, ttl_seconds: Optional[int] = None,
) -> None: ) -> None:
return await self.routing_table.get_provider_impl(bank_id).insert_documents( return await self.routing_table.get_provider_impl(vector_db_id).insert_chunks(
bank_id, documents, ttl_seconds vector_db_id, chunks, ttl_seconds
) )
async def query_documents( async def query_chunks(
self, self,
bank_id: str, vector_db_id: str,
query: InterleavedContent, query: InterleavedContent,
params: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse: ) -> QueryChunksResponse:
return await self.routing_table.get_provider_impl(bank_id).query_documents( return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(
bank_id, query, params vector_db_id, query, params
) )

View file

@ -11,12 +11,12 @@ from .config import FaissImplConfig
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]): async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]):
from .faiss import FaissMemoryImpl from .faiss import FaissVectorIOImpl
assert isinstance( assert isinstance(
config, FaissImplConfig config, FaissImplConfig
), f"Unexpected config type: {type(config)}" ), f"Unexpected config type: {type(config)}"
impl = FaissMemoryImpl(config, deps[Api.inference]) impl = FaissVectorIOImpl(config, deps[Api.inference])
await impl.initialize() await impl.initialize()
return impl return impl

View file

@ -17,35 +17,28 @@ import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from llama_stack.apis.inference import InterleavedContent from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.memory import ( from llama_stack.apis.vector_dbs import VectorDB
Chunk, from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
Memory, from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
MemoryBankDocument,
QueryDocumentsResponse,
)
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType, VectorMemoryBank
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import ( from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex, EmbeddingIndex,
VectorDBWithIndex,
) )
from .config import FaissImplConfig from .config import FaissImplConfig
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
MEMORY_BANKS_PREFIX = "memory_banks:v2::" VECTOR_DBS_PREFIX = "vector_dbs:v2::"
FAISS_INDEX_PREFIX = "faiss_index:v2::" FAISS_INDEX_PREFIX = "faiss_index:v2::"
class FaissIndex(EmbeddingIndex): class FaissIndex(EmbeddingIndex):
id_by_index: Dict[int, str]
chunk_by_index: Dict[int, str] chunk_by_index: Dict[int, str]
def __init__(self, dimension: int, kvstore=None, bank_id: str = None): def __init__(self, dimension: int, kvstore=None, bank_id: str = None):
self.index = faiss.IndexFlatL2(dimension) self.index = faiss.IndexFlatL2(dimension)
self.id_by_index = {}
self.chunk_by_index = {} self.chunk_by_index = {}
self.kvstore = kvstore self.kvstore = kvstore
self.bank_id = bank_id self.bank_id = bank_id
@ -65,7 +58,6 @@ class FaissIndex(EmbeddingIndex):
if stored_data: if stored_data:
data = json.loads(stored_data) data = json.loads(stored_data)
self.id_by_index = {int(k): v for k, v in data["id_by_index"].items()}
self.chunk_by_index = { self.chunk_by_index = {
int(k): Chunk.model_validate_json(v) int(k): Chunk.model_validate_json(v)
for k, v in data["chunk_by_index"].items() for k, v in data["chunk_by_index"].items()
@ -82,7 +74,6 @@ class FaissIndex(EmbeddingIndex):
buffer = io.BytesIO() buffer = io.BytesIO()
np.savetxt(buffer, np_index) np.savetxt(buffer, np_index)
data = { data = {
"id_by_index": self.id_by_index,
"chunk_by_index": { "chunk_by_index": {
k: v.model_dump_json() for k, v in self.chunk_by_index.items() k: v.model_dump_json() for k, v in self.chunk_by_index.items()
}, },
@ -108,10 +99,9 @@ class FaissIndex(EmbeddingIndex):
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}" f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
) )
indexlen = len(self.id_by_index) indexlen = len(self.chunk_by_index)
for i, chunk in enumerate(chunks): for i, chunk in enumerate(chunks):
self.chunk_by_index[indexlen + i] = chunk self.chunk_by_index[indexlen + i] = chunk
self.id_by_index[indexlen + i] = chunk.document_id
self.index.add(np.array(embeddings).astype(np.float32)) self.index.add(np.array(embeddings).astype(np.float32))
@ -120,7 +110,7 @@ class FaissIndex(EmbeddingIndex):
async def query( async def query(
self, embedding: NDArray, k: int, score_threshold: float self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse: ) -> QueryChunksResponse:
distances, indices = self.index.search( distances, indices = self.index.search(
embedding.reshape(1, -1).astype(np.float32), k embedding.reshape(1, -1).astype(np.float32), k
) )
@ -133,10 +123,10 @@ class FaissIndex(EmbeddingIndex):
chunks.append(self.chunk_by_index[int(i)]) chunks.append(self.chunk_by_index[int(i)])
scores.append(1.0 / float(d)) scores.append(1.0 / float(d))
return QueryDocumentsResponse(chunks=chunks, scores=scores) return QueryChunksResponse(chunks=chunks, scores=scores)
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate): class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None: def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
self.config = config self.config = config
self.inference_api = inference_api self.inference_api = inference_api
@ -146,77 +136,74 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
async def initialize(self) -> None: async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore) self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing banks from kvstore # Load existing banks from kvstore
start_key = MEMORY_BANKS_PREFIX start_key = VECTOR_DBS_PREFIX
end_key = f"{MEMORY_BANKS_PREFIX}\xff" end_key = f"{VECTOR_DBS_PREFIX}\xff"
stored_banks = await self.kvstore.range(start_key, end_key) stored_vector_dbs = await self.kvstore.range(start_key, end_key)
for bank_data in stored_banks: for vector_db_data in stored_vector_dbs:
bank = VectorMemoryBank.model_validate_json(bank_data) vector_db = VectorDB.model_validate_json(vector_db_data)
index = BankWithIndex( index = VectorDBWithIndex(
bank, vector_db,
await FaissIndex.create( await FaissIndex.create(
bank.embedding_dimension, self.kvstore, bank.identifier vector_db.embedding_dimension, self.kvstore, vector_db.identifier
), ),
self.inference_api, self.inference_api,
) )
self.cache[bank.identifier] = index self.cache[vector_db.identifier] = index
async def shutdown(self) -> None: async def shutdown(self) -> None:
# Cleanup if needed # Cleanup if needed
pass pass
async def register_memory_bank( async def register_vector_db(
self, self,
memory_bank: MemoryBank, vector_db: VectorDB,
) -> None: ) -> None:
assert ( key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}"
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
# Store in kvstore
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
await self.kvstore.set( await self.kvstore.set(
key=key, key=key,
value=memory_bank.model_dump_json(), value=vector_db.model_dump_json(),
) )
# Store in cache # Store in cache
self.cache[memory_bank.identifier] = BankWithIndex( self.cache[vector_db.identifier] = VectorDBWithIndex(
memory_bank, vector_db=vector_db,
await FaissIndex.create( index=await FaissIndex.create(
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier vector_db.embedding_dimension, self.kvstore, vector_db.identifier
), ),
self.inference_api, inference_api=self.inference_api,
) )
async def list_memory_banks(self) -> List[MemoryBank]: async def list_vector_dbs(self) -> List[VectorDB]:
return [i.bank for i in self.cache.values()] return [i.vector_db for i in self.cache.values()]
async def unregister_memory_bank(self, memory_bank_id: str) -> None: async def unregister_vector_db(self, vector_db_id: str) -> None:
await self.cache[memory_bank_id].index.delete() await self.cache[vector_db_id].index.delete()
del self.cache[memory_bank_id] del self.cache[vector_db_id]
await self.kvstore.delete(f"{MEMORY_BANKS_PREFIX}{memory_bank_id}") await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}")
async def insert_documents( async def insert_chunks(
self, self,
bank_id: str, vector_db_id: str,
documents: List[MemoryBankDocument], chunks: List[Chunk],
ttl_seconds: Optional[int] = None, ttl_seconds: Optional[int] = None,
) -> None: ) -> None:
index = self.cache.get(bank_id) index = self.cache.get(vector_db_id)
if index is None: if index is None:
raise ValueError(f"Bank {bank_id} not found. found: {self.cache.keys()}") raise ValueError(
f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}"
)
await index.insert_documents(documents) await index.insert_chunks(chunks)
async def query_documents( async def query_chunks(
self, self,
bank_id: str, vector_db_id: str,
query: InterleavedContent, query: InterleavedContent,
params: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse: ) -> QueryChunksResponse:
index = self.cache.get(bank_id) index = self.cache.get(vector_db_id)
if index is None: if index is None:
raise ValueError(f"Bank {bank_id} not found") raise ValueError(f"Vector DB {vector_db_id} not found")
return await index.query_documents(query, params) return await index.query_chunks(query, params)

View file

@ -33,8 +33,8 @@ def available_providers() -> List[ProviderSpec]:
api_dependencies=[ api_dependencies=[
Api.inference, Api.inference,
Api.safety, Api.safety,
Api.memory, Api.vector_io,
Api.memory_banks, Api.vector_dbs,
Api.tool_runtime, Api.tool_runtime,
Api.tool_groups, Api.tool_groups,
], ],

View file

@ -23,7 +23,7 @@ def available_providers() -> List[ProviderSpec]:
pip_packages=[], pip_packages=[],
module="llama_stack.providers.inline.tool_runtime.memory", module="llama_stack.providers.inline.tool_runtime.memory",
config_class="llama_stack.providers.inline.tool_runtime.memory.config.MemoryToolRuntimeConfig", config_class="llama_stack.providers.inline.tool_runtime.memory.config.MemoryToolRuntimeConfig",
api_dependencies=[Api.memory, Api.memory_banks, Api.inference], api_dependencies=[Api.vector_io, Api.vector_dbs, Api.inference],
), ),
InlineProviderSpec( InlineProviderSpec(
api=Api.tool_runtime, api=Api.tool_runtime,

View file

@ -302,7 +302,7 @@ def pytest_collection_modifyitems(session, config, items):
pytest_plugins = [ pytest_plugins = [
"llama_stack.providers.tests.inference.fixtures", "llama_stack.providers.tests.inference.fixtures",
"llama_stack.providers.tests.safety.fixtures", "llama_stack.providers.tests.safety.fixtures",
"llama_stack.providers.tests.memory.fixtures", "llama_stack.providers.tests.vector_io.fixtures",
"llama_stack.providers.tests.agents.fixtures", "llama_stack.providers.tests.agents.fixtures",
"llama_stack.providers.tests.datasetio.fixtures", "llama_stack.providers.tests.datasetio.fixtures",
"llama_stack.providers.tests.scoring.fixtures", "llama_stack.providers.tests.scoring.fixtures",

View file

@ -1,192 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
import pytest
from llama_stack.apis.memory import MemoryBankDocument, QueryDocumentsResponse
from llama_stack.apis.memory_banks import (
MemoryBank,
MemoryBanks,
VectorMemoryBankParams,
)
# How to run this test:
#
# pytest llama_stack/providers/tests/memory/test_memory.py
# -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
# -v -s --tb=short --disable-warnings
@pytest.fixture
def sample_documents():
return [
MemoryBankDocument(
document_id="doc1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
document_id="doc2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
document_id="doc3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
document_id="doc4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
async def register_memory_bank(
banks_impl: MemoryBanks, embedding_model: str
) -> MemoryBank:
bank_id = f"test_bank_{uuid.uuid4().hex}"
return await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
class TestMemory:
@pytest.mark.asyncio
async def test_banks_list(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
# Register a test bank
registered_bank = await register_memory_bank(banks_impl, embedding_model)
try:
# Verify our bank shows up in list
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert any(
bank.memory_bank_id == registered_bank.memory_bank_id
for bank in response
)
finally:
# Clean up
await banks_impl.unregister_memory_bank(registered_bank.memory_bank_id)
# Verify our bank was removed
response = await banks_impl.list_memory_banks()
assert all(
bank.memory_bank_id != registered_bank.memory_bank_id for bank in response
)
@pytest.mark.asyncio
async def test_banks_register(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
bank_id = f"test_bank_{uuid.uuid4().hex}"
try:
# Register initial bank
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
# Verify our bank exists
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert any(bank.memory_bank_id == bank_id for bank in response)
# Try registering same bank again
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
# Verify still only one instance of our bank
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert (
len([bank for bank in response if bank.memory_bank_id == bank_id]) == 1
)
finally:
# Clean up
await banks_impl.unregister_memory_bank(bank_id)
@pytest.mark.asyncio
async def test_query_documents(
self, memory_stack, embedding_model, sample_documents
):
memory_impl, banks_impl = memory_stack
with pytest.raises(ValueError):
await memory_impl.insert_documents("test_bank", sample_documents)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
await memory_impl.insert_documents(
registered_bank.memory_bank_id, sample_documents
)
query1 = "programming language"
response1 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query1
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Test case 3: Query with semantic similarity
query3 = "AI and brain-inspired computing"
response3 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query3
)
assert_valid_response(response3)
assert any(
"neural networks" in chunk.content.lower() for chunk in response3.chunks
)
# Test case 4: Query with limit on number of results
query4 = "computer"
params4 = {"max_chunks": 2}
response4 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query4, params4
)
assert_valid_response(response4)
assert len(response4.chunks) <= 2
# Test case 5: Query with threshold on similarity score
query5 = "quantum computing" # Not directly related to any document
params5 = {"score_threshold": 0.01}
response5 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query5, params5
)
assert_valid_response(response5)
print("The scores are:", response5.scores)
assert all(score >= 0.01 for score in response5.scores)
def assert_valid_response(response: QueryDocumentsResponse):
assert isinstance(response, QueryDocumentsResponse)
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
assert chunk.document_id is not None

View file

@ -12,11 +12,11 @@ from pydantic import BaseModel
from llama_stack.apis.datasets import DatasetInput from llama_stack.apis.datasets import DatasetInput
from llama_stack.apis.eval_tasks import EvalTaskInput from llama_stack.apis.eval_tasks import EvalTaskInput
from llama_stack.apis.memory_banks import MemoryBankInput
from llama_stack.apis.models import ModelInput from llama_stack.apis.models import ModelInput
from llama_stack.apis.scoring_functions import ScoringFnInput from llama_stack.apis.scoring_functions import ScoringFnInput
from llama_stack.apis.shields import ShieldInput from llama_stack.apis.shields import ShieldInput
from llama_stack.apis.tools import ToolGroupInput from llama_stack.apis.tools import ToolGroupInput
from llama_stack.apis.vector_dbs import VectorDBInput
from llama_stack.distribution.build import print_pip_install_help from llama_stack.distribution.build import print_pip_install_help
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import Provider, StackRunConfig from llama_stack.distribution.datatypes import Provider, StackRunConfig
@ -39,7 +39,7 @@ async def construct_stack_for_test(
provider_data: Optional[Dict[str, Any]] = None, provider_data: Optional[Dict[str, Any]] = None,
models: Optional[List[ModelInput]] = None, models: Optional[List[ModelInput]] = None,
shields: Optional[List[ShieldInput]] = None, shields: Optional[List[ShieldInput]] = None,
memory_banks: Optional[List[MemoryBankInput]] = None, vector_dbs: Optional[List[VectorDBInput]] = None,
datasets: Optional[List[DatasetInput]] = None, datasets: Optional[List[DatasetInput]] = None,
scoring_fns: Optional[List[ScoringFnInput]] = None, scoring_fns: Optional[List[ScoringFnInput]] = None,
eval_tasks: Optional[List[EvalTaskInput]] = None, eval_tasks: Optional[List[EvalTaskInput]] = None,
@ -53,7 +53,7 @@ async def construct_stack_for_test(
metadata_store=SqliteKVStoreConfig(db_path=sqlite_file.name), metadata_store=SqliteKVStoreConfig(db_path=sqlite_file.name),
models=models or [], models=models or [],
shields=shields or [], shields=shields or [],
memory_banks=memory_banks or [], vector_dbs=vector_dbs or [],
datasets=datasets or [], datasets=datasets or [],
scoring_fns=scoring_fns or [], scoring_fns=scoring_fns or [],
eval_tasks=eval_tasks or [], eval_tasks=eval_tasks or [],

View file

@ -13,14 +13,14 @@ from ..conftest import (
) )
from ..inference.fixtures import INFERENCE_FIXTURES from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import MEMORY_FIXTURES from .fixtures import VECTOR_IO_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param( pytest.param(
{ {
"inference": "sentence_transformers", "inference": "sentence_transformers",
"memory": "faiss", "vector_io": "faiss",
}, },
id="sentence_transformers", id="sentence_transformers",
marks=pytest.mark.sentence_transformers, marks=pytest.mark.sentence_transformers,
@ -28,7 +28,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param( pytest.param(
{ {
"inference": "ollama", "inference": "ollama",
"memory": "faiss", "vector_io": "faiss",
}, },
id="ollama", id="ollama",
marks=pytest.mark.ollama, marks=pytest.mark.ollama,
@ -36,7 +36,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param( pytest.param(
{ {
"inference": "sentence_transformers", "inference": "sentence_transformers",
"memory": "chroma", "vector_io": "chroma",
}, },
id="chroma", id="chroma",
marks=pytest.mark.chroma, marks=pytest.mark.chroma,
@ -44,7 +44,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param( pytest.param(
{ {
"inference": "bedrock", "inference": "bedrock",
"memory": "qdrant", "vector_io": "qdrant",
}, },
id="qdrant", id="qdrant",
marks=pytest.mark.qdrant, marks=pytest.mark.qdrant,
@ -52,7 +52,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param( pytest.param(
{ {
"inference": "fireworks", "inference": "fireworks",
"memory": "weaviate", "vector_io": "weaviate",
}, },
id="weaviate", id="weaviate",
marks=pytest.mark.weaviate, marks=pytest.mark.weaviate,
@ -61,7 +61,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
def pytest_configure(config): def pytest_configure(config):
for fixture_name in MEMORY_FIXTURES: for fixture_name in VECTOR_IO_FIXTURES:
config.addinivalue_line( config.addinivalue_line(
"markers", "markers",
f"{fixture_name}: marks tests as {fixture_name} specific", f"{fixture_name}: marks tests as {fixture_name} specific",
@ -69,7 +69,7 @@ def pytest_configure(config):
def pytest_generate_tests(metafunc): def pytest_generate_tests(metafunc):
test_config = get_test_config_for_api(metafunc.config, "memory") test_config = get_test_config_for_api(metafunc.config, "vector_io")
if "embedding_model" in metafunc.fixturenames: if "embedding_model" in metafunc.fixturenames:
model = getattr(test_config, "embedding_model", None) model = getattr(test_config, "embedding_model", None)
# Fall back to the default if not specified by the config file # Fall back to the default if not specified by the config file
@ -81,16 +81,16 @@ def pytest_generate_tests(metafunc):
metafunc.parametrize("embedding_model", params, indirect=True) metafunc.parametrize("embedding_model", params, indirect=True)
if "memory_stack" in metafunc.fixturenames: if "vector_io_stack" in metafunc.fixturenames:
available_fixtures = { available_fixtures = {
"inference": INFERENCE_FIXTURES, "inference": INFERENCE_FIXTURES,
"memory": MEMORY_FIXTURES, "vector_io": VECTOR_IO_FIXTURES,
} }
combinations = ( combinations = (
get_provider_fixture_overrides_from_test_config( get_provider_fixture_overrides_from_test_config(
metafunc.config, "memory", DEFAULT_PROVIDER_COMBINATIONS metafunc.config, "vector_io", DEFAULT_PROVIDER_COMBINATIONS
) )
or get_provider_fixture_overrides(metafunc.config, available_fixtures) or get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS or DEFAULT_PROVIDER_COMBINATIONS
) )
metafunc.parametrize("memory_stack", combinations, indirect=True) metafunc.parametrize("vector_io_stack", combinations, indirect=True)

View file

@ -12,11 +12,12 @@ import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
from llama_stack.providers.remote.memory.chroma import ChromaRemoteImplConfig from llama_stack.providers.inline.vector_io.faiss import FaissImplConfig
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig from llama_stack.providers.remote.vector_io.chroma import ChromaRemoteImplConfig
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig from llama_stack.providers.remote.vector_io.pgvector import PGVectorConfig
from llama_stack.providers.remote.vector_io.weaviate import WeaviateConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
@ -32,12 +33,12 @@ def embedding_model(request):
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def memory_remote() -> ProviderFixture: def vector_io_remote() -> ProviderFixture:
return remote_stack_fixture() return remote_stack_fixture()
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def memory_faiss() -> ProviderFixture: def vector_io_faiss() -> ProviderFixture:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db") temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
return ProviderFixture( return ProviderFixture(
providers=[ providers=[
@ -53,7 +54,7 @@ def memory_faiss() -> ProviderFixture:
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def memory_pgvector() -> ProviderFixture: def vector_io_pgvector() -> ProviderFixture:
return ProviderFixture( return ProviderFixture(
providers=[ providers=[
Provider( Provider(
@ -72,7 +73,7 @@ def memory_pgvector() -> ProviderFixture:
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def memory_weaviate() -> ProviderFixture: def vector_io_weaviate() -> ProviderFixture:
return ProviderFixture( return ProviderFixture(
providers=[ providers=[
Provider( Provider(
@ -89,7 +90,7 @@ def memory_weaviate() -> ProviderFixture:
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def memory_chroma() -> ProviderFixture: def vector_io_chroma() -> ProviderFixture:
url = os.getenv("CHROMA_URL") url = os.getenv("CHROMA_URL")
if url: if url:
config = ChromaRemoteImplConfig(url=url) config = ChromaRemoteImplConfig(url=url)
@ -110,23 +111,23 @@ def memory_chroma() -> ProviderFixture:
) )
MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"] VECTOR_IO_FIXTURES = ["faiss", "pgvector", "weaviate", "chroma"]
@pytest_asyncio.fixture(scope="session") @pytest_asyncio.fixture(scope="session")
async def memory_stack(embedding_model, request): async def vector_io_stack(embedding_model, request):
fixture_dict = request.param fixture_dict = request.param
providers = {} providers = {}
provider_data = {} provider_data = {}
for key in ["inference", "memory"]: for key in ["inference", "vector_io"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}") fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers providers[key] = fixture.providers
if fixture.provider_data: if fixture.provider_data:
provider_data.update(fixture.provider_data) provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test( test_stack = await construct_stack_for_test(
[Api.memory, Api.inference], [Api.vector_io, Api.inference],
providers, providers,
provider_data, provider_data,
models=[ models=[
@ -140,4 +141,4 @@ async def memory_stack(embedding_model, request):
], ],
) )
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks] return test_stack.impls[Api.vector_io], test_stack.impls[Api.vector_dbs]

View file

@ -0,0 +1,200 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
import pytest
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB
from llama_stack.apis.vector_io import QueryChunksResponse
from llama_stack.providers.utils.memory.vector_store import (
make_overlapped_chunks,
MemoryBankDocument,
)
# How to run this test:
#
# pytest llama_stack/providers/tests/memory/test_memory.py
# -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
# -v -s --tb=short --disable-warnings
@pytest.fixture(scope="session")
def sample_chunks():
docs = [
MemoryBankDocument(
document_id="doc1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
document_id="doc2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
document_id="doc3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
document_id="doc4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
chunks = []
for doc in docs:
chunks.extend(
make_overlapped_chunks(
doc.document_id, doc.content, window_len=512, overlap_len=64
)
)
return chunks
async def register_vector_db(vector_dbs_impl: VectorDB, embedding_model: str):
vector_db_id = f"test_vector_db_{uuid.uuid4().hex}"
return await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
class TestVectorIO:
@pytest.mark.asyncio
async def test_banks_list(self, vector_io_stack, embedding_model):
_, vector_dbs_impl = vector_io_stack
# Register a test bank
registered_vector_db = await register_vector_db(
vector_dbs_impl, embedding_model
)
try:
# Verify our bank shows up in list
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert any(
vector_db.vector_db_id == registered_vector_db.vector_db_id
for vector_db in response.data
)
finally:
# Clean up
await vector_dbs_impl.unregister_vector_db(
registered_vector_db.vector_db_id
)
# Verify our bank was removed
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert all(
vector_db.vector_db_id != registered_vector_db.vector_db_id
for vector_db in response.data
)
@pytest.mark.asyncio
async def test_banks_register(self, vector_io_stack, embedding_model):
_, vector_dbs_impl = vector_io_stack
vector_db_id = f"test_vector_db_{uuid.uuid4().hex}"
try:
# Register initial bank
await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
# Verify our bank exists
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert any(
vector_db.vector_db_id == vector_db_id for vector_db in response.data
)
# Try registering same bank again
await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
# Verify still only one instance of our bank
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert (
len(
[
vector_db
for vector_db in response.data
if vector_db.vector_db_id == vector_db_id
]
)
== 1
)
finally:
# Clean up
await vector_dbs_impl.unregister_vector_db(vector_db_id)
@pytest.mark.asyncio
async def test_query_documents(
self, vector_io_stack, embedding_model, sample_chunks
):
vector_io_impl, vector_dbs_impl = vector_io_stack
with pytest.raises(ValueError):
await vector_io_impl.insert_chunks("test_vector_db", sample_chunks)
registered_db = await register_vector_db(vector_dbs_impl, embedding_model)
await vector_io_impl.insert_chunks(registered_db.vector_db_id, sample_chunks)
query1 = "programming language"
response1 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query1
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Test case 3: Query with semantic similarity
query3 = "AI and brain-inspired computing"
response3 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query3
)
assert_valid_response(response3)
assert any(
"neural networks" in chunk.content.lower() for chunk in response3.chunks
)
# Test case 4: Query with limit on number of results
query4 = "computer"
params4 = {"max_chunks": 2}
response4 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query4, params4
)
assert_valid_response(response4)
assert len(response4.chunks) <= 2
# Test case 5: Query with threshold on similarity score
query5 = "quantum computing" # Not directly related to any document
params5 = {"score_threshold": 0.01}
response5 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query5, params5
)
assert_valid_response(response5)
print("The scores are:", response5.scores)
assert all(score >= 0.01 for score in response5.scores)
def assert_valid_response(response: QueryChunksResponse):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)

View file

@ -11,8 +11,11 @@ from pathlib import Path
import pytest import pytest
from llama_stack.apis.memory.memory import MemoryBankDocument, URL from llama_stack.providers.utils.memory.vector_store import (
from llama_stack.providers.utils.memory.vector_store import content_from_doc content_from_doc,
MemoryBankDocument,
URL,
)
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf" DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"

View file

@ -18,6 +18,8 @@ import numpy as np
from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.llama3.api.tokenizer import Tokenizer
from numpy.typing import NDArray from numpy.typing import NDArray
from pydantic import BaseModel, Field
from pypdf import PdfReader from pypdf import PdfReader
from llama_stack.apis.common.content_types import ( from llama_stack.apis.common.content_types import (
@ -25,16 +27,24 @@ from llama_stack.apis.common.content_types import (
TextContentItem, TextContentItem,
URL, URL,
) )
from llama_stack.apis.memory import Chunk, MemoryBankDocument, QueryDocumentsResponse from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.memory_banks import VectorMemoryBank from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
from llama_stack.providers.datatypes import Api from llama_stack.providers.datatypes import Api
from llama_stack.providers.utils.inference.prompt_adapter import ( from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str, interleaved_content_as_str,
) )
log = logging.getLogger(__name__) log = logging.getLogger(__name__)
class MemoryBankDocument(BaseModel):
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: Dict[str, Any] = Field(default_factory=dict)
def parse_pdf(data: bytes) -> str: def parse_pdf(data: bytes) -> str:
# For PDF and DOC/DOCX files, we can't reliably convert to string # For PDF and DOC/DOCX files, we can't reliably convert to string
pdf_bytes = io.BytesIO(data) pdf_bytes = io.BytesIO(data)
@ -165,7 +175,7 @@ class EmbeddingIndex(ABC):
@abstractmethod @abstractmethod
async def query( async def query(
self, embedding: NDArray, k: int, score_threshold: float self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse: ) -> QueryChunksResponse:
raise NotImplementedError() raise NotImplementedError()
@abstractmethod @abstractmethod
@ -174,56 +184,35 @@ class EmbeddingIndex(ABC):
@dataclass @dataclass
class BankWithIndex: class VectorDBWithIndex:
bank: VectorMemoryBank vector_db: VectorDB
index: EmbeddingIndex index: EmbeddingIndex
inference_api: Api.inference inference_api: Api.inference
async def insert_documents( async def insert_chunks(
self, self,
documents: List[MemoryBankDocument], chunks: List[Chunk],
) -> None: ) -> None:
for doc in documents:
content = await content_from_doc(doc)
chunks = make_overlapped_chunks(
doc.document_id,
content,
self.bank.chunk_size_in_tokens,
self.bank.overlap_size_in_tokens
or (self.bank.chunk_size_in_tokens // 4),
)
if not chunks:
continue
embeddings_response = await self.inference_api.embeddings( embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [x.content for x in chunks] self.vector_db.embedding_model, [x.content for x in chunks]
) )
embeddings = np.array(embeddings_response.embeddings) embeddings = np.array(embeddings_response.embeddings)
await self.index.add_chunks(chunks, embeddings) await self.index.add_chunks(chunks, embeddings)
async def query_documents( async def query_chunks(
self, self,
query: InterleavedContent, query: InterleavedContent,
params: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse: ) -> QueryChunksResponse:
if params is None: if params is None:
params = {} params = {}
k = params.get("max_chunks", 3) k = params.get("max_chunks", 3)
score_threshold = params.get("score_threshold", 0.0) score_threshold = params.get("score_threshold", 0.0)
def _process(c) -> str: query_str = interleaved_content_as_str(query)
if isinstance(c, str):
return c
else:
return "<media>"
if isinstance(query, list):
query_str = " ".join([_process(c) for c in query])
else:
query_str = _process(query)
embeddings_response = await self.inference_api.embeddings( embeddings_response = await self.inference_api.embeddings(
self.bank.embedding_model, [query_str] self.vector_db.embedding_model, [query_str]
) )
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32) query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
return await self.index.query(query_vector, k, score_threshold) return await self.index.query(query_vector, k, score_threshold)

View file

@ -32,6 +32,7 @@ def pytest_addoption(parser):
TEXT_MODEL = "meta-llama/Llama-3.1-8B-Instruct" TEXT_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
INFERENCE_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct" INFERENCE_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def provider_data(): def provider_data():
# check env for tavily secret, brave secret and inject all into provider data # check env for tavily secret, brave secret and inject all into provider data