mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-10 13:28:40 +00:00
fix(tests): ensure test isolation in server mode (#3737)
Propagate test IDs from client to server via HTTP headers to maintain proper test isolation when running with server-based stack configs. Without this, recorded/replayed inference requests in server mode would leak across tests. Changes: - Patch client _prepare_request to inject test ID into provider data header - Sync test context from provider data on server side before storage operations - Set LLAMA_STACK_TEST_STACK_CONFIG_TYPE env var based on stack config - Configure console width for cleaner log output in CI - Add SQLITE_STORE_DIR temp directory for test data isolation
This commit is contained in:
parent
96886afaca
commit
79bed44b04
419 changed files with 106801 additions and 35909 deletions
|
@ -133,7 +133,10 @@ def strip_rich_markup(text):
|
|||
|
||||
class CustomRichHandler(RichHandler):
|
||||
def __init__(self, *args, **kwargs):
|
||||
kwargs["console"] = Console()
|
||||
# Set a reasonable default width for console output, especially when redirected to files
|
||||
console_width = int(os.environ.get("LLAMA_STACK_LOG_WIDTH", "120"))
|
||||
# Don't force terminal codes to avoid ANSI escape codes in log files
|
||||
kwargs["console"] = Console(width=console_width)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def emit(self, record):
|
||||
|
|
|
@ -15,7 +15,7 @@ from enum import StrEnum
|
|||
from pathlib import Path
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
from openai import NOT_GIVEN
|
||||
from openai import NOT_GIVEN, OpenAI
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
|
@ -79,6 +79,96 @@ def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict
|
|||
return hashlib.sha256(normalized_json.encode()).hexdigest()
|
||||
|
||||
|
||||
def _sync_test_context_from_provider_data():
|
||||
"""In server mode, sync test ID from provider_data to _test_context.
|
||||
|
||||
This ensures that storage operations (which read from _test_context) work correctly
|
||||
in server mode where the test ID arrives via HTTP header → provider_data.
|
||||
|
||||
Returns a token to reset _test_context, or None if no sync was needed.
|
||||
"""
|
||||
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
|
||||
if stack_config_type != "server":
|
||||
return None
|
||||
|
||||
try:
|
||||
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
|
||||
|
||||
provider_data = PROVIDER_DATA_VAR.get()
|
||||
|
||||
if provider_data and "__test_id" in provider_data:
|
||||
test_id = provider_data["__test_id"]
|
||||
return _test_context.set(test_id)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def patch_httpx_for_test_id():
|
||||
"""Patch client _prepare_request methods to inject test ID into provider data header.
|
||||
|
||||
This is needed for server mode where the test ID must be transported from
|
||||
client to server via HTTP headers. In library_client mode, this patch is a no-op
|
||||
since everything runs in the same process.
|
||||
|
||||
We use the _prepare_request hook that Stainless clients provide for mutating
|
||||
requests after construction but before sending.
|
||||
"""
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
if "llama_stack_client_prepare_request" in _original_methods:
|
||||
return
|
||||
|
||||
_original_methods["llama_stack_client_prepare_request"] = LlamaStackClient._prepare_request
|
||||
_original_methods["openai_prepare_request"] = OpenAI._prepare_request
|
||||
|
||||
def patched_prepare_request(self, request):
|
||||
# Call original first (it's a sync method that returns None)
|
||||
# Determine which original to call based on client type
|
||||
if "llama_stack_client" in self.__class__.__module__:
|
||||
_original_methods["llama_stack_client_prepare_request"](self, request)
|
||||
_original_methods["openai_prepare_request"](self, request)
|
||||
|
||||
# Only inject test ID in server mode
|
||||
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
|
||||
test_id = _test_context.get()
|
||||
|
||||
if stack_config_type == "server" and test_id:
|
||||
provider_data_header = request.headers.get("X-LlamaStack-Provider-Data")
|
||||
|
||||
if provider_data_header:
|
||||
provider_data = json.loads(provider_data_header)
|
||||
else:
|
||||
provider_data = {}
|
||||
|
||||
provider_data["__test_id"] = test_id
|
||||
request.headers["X-LlamaStack-Provider-Data"] = json.dumps(provider_data)
|
||||
|
||||
return None
|
||||
|
||||
LlamaStackClient._prepare_request = patched_prepare_request
|
||||
OpenAI._prepare_request = patched_prepare_request
|
||||
|
||||
|
||||
# currently, unpatch is never called
|
||||
def unpatch_httpx_for_test_id():
|
||||
"""Remove client _prepare_request patches for test ID injection."""
|
||||
if "llama_stack_client_prepare_request" not in _original_methods:
|
||||
return
|
||||
|
||||
from llama_stack_client import LlamaStackClient
|
||||
|
||||
LlamaStackClient._prepare_request = _original_methods["llama_stack_client_prepare_request"]
|
||||
del _original_methods["llama_stack_client_prepare_request"]
|
||||
|
||||
# Also restore OpenAI client if it was patched
|
||||
if "openai_prepare_request" in _original_methods:
|
||||
OpenAI._prepare_request = _original_methods["openai_prepare_request"]
|
||||
del _original_methods["openai_prepare_request"]
|
||||
|
||||
|
||||
def get_inference_mode() -> InferenceMode:
|
||||
return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
|
||||
|
||||
|
@ -244,7 +334,7 @@ class ResponseStorage:
|
|||
with open(response_path, "w") as f:
|
||||
json.dump(
|
||||
{
|
||||
"test_id": _test_context.get(), # Include for debugging
|
||||
"test_id": _test_context.get(),
|
||||
"request": request,
|
||||
"response": serialized_response,
|
||||
},
|
||||
|
@ -386,108 +476,115 @@ async def _patched_inference_method(original_method, self, client_type, endpoint
|
|||
else:
|
||||
return await original_method(self, *args, **kwargs)
|
||||
|
||||
# Get base URL based on client type
|
||||
if client_type == "openai":
|
||||
base_url = str(self._client.base_url)
|
||||
# In server mode, sync test ID from provider_data to _test_context for storage operations
|
||||
test_context_token = _sync_test_context_from_provider_data()
|
||||
|
||||
# the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out
|
||||
kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN}
|
||||
elif client_type == "ollama":
|
||||
# Get base URL from the client (Ollama client uses host attribute)
|
||||
base_url = getattr(self, "host", "http://localhost:11434")
|
||||
if not base_url.startswith("http"):
|
||||
base_url = f"http://{base_url}"
|
||||
else:
|
||||
raise ValueError(f"Unknown client type: {client_type}")
|
||||
try:
|
||||
# Get base URL based on client type
|
||||
if client_type == "openai":
|
||||
base_url = str(self._client.base_url)
|
||||
|
||||
url = base_url.rstrip("/") + endpoint
|
||||
# Special handling for Databricks URLs to avoid leaking workspace info
|
||||
# e.g. https://adb-1234567890123456.7.cloud.databricks.com -> https://...cloud.databricks.com
|
||||
if "cloud.databricks.com" in url:
|
||||
url = "__databricks__" + url.split("cloud.databricks.com")[-1]
|
||||
method = "POST"
|
||||
headers = {}
|
||||
body = kwargs
|
||||
|
||||
request_hash = normalize_request(method, url, headers, body)
|
||||
|
||||
# Try to find existing recording for REPLAY or RECORD_IF_MISSING modes
|
||||
recording = None
|
||||
if mode == InferenceMode.REPLAY or mode == InferenceMode.RECORD_IF_MISSING:
|
||||
# Special handling for model-list endpoints: merge all recordings with this hash
|
||||
if endpoint in ("/api/tags", "/v1/models"):
|
||||
records = storage._model_list_responses(request_hash)
|
||||
recording = _combine_model_list_responses(endpoint, records)
|
||||
# the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out
|
||||
kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN}
|
||||
elif client_type == "ollama":
|
||||
# Get base URL from the client (Ollama client uses host attribute)
|
||||
base_url = getattr(self, "host", "http://localhost:11434")
|
||||
if not base_url.startswith("http"):
|
||||
base_url = f"http://{base_url}"
|
||||
else:
|
||||
recording = storage.find_recording(request_hash)
|
||||
raise ValueError(f"Unknown client type: {client_type}")
|
||||
|
||||
if recording:
|
||||
response_body = recording["response"]["body"]
|
||||
url = base_url.rstrip("/") + endpoint
|
||||
# Special handling for Databricks URLs to avoid leaking workspace info
|
||||
# e.g. https://adb-1234567890123456.7.cloud.databricks.com -> https://...cloud.databricks.com
|
||||
if "cloud.databricks.com" in url:
|
||||
url = "__databricks__" + url.split("cloud.databricks.com")[-1]
|
||||
method = "POST"
|
||||
headers = {}
|
||||
body = kwargs
|
||||
|
||||
if recording["response"].get("is_streaming", False):
|
||||
request_hash = normalize_request(method, url, headers, body)
|
||||
|
||||
async def replay_stream():
|
||||
for chunk in response_body:
|
||||
# Try to find existing recording for REPLAY or RECORD_IF_MISSING modes
|
||||
recording = None
|
||||
if mode == InferenceMode.REPLAY or mode == InferenceMode.RECORD_IF_MISSING:
|
||||
# Special handling for model-list endpoints: merge all recordings with this hash
|
||||
if endpoint in ("/api/tags", "/v1/models"):
|
||||
records = storage._model_list_responses(request_hash)
|
||||
recording = _combine_model_list_responses(endpoint, records)
|
||||
else:
|
||||
recording = storage.find_recording(request_hash)
|
||||
|
||||
if recording:
|
||||
response_body = recording["response"]["body"]
|
||||
|
||||
if recording["response"].get("is_streaming", False):
|
||||
|
||||
async def replay_stream():
|
||||
for chunk in response_body:
|
||||
yield chunk
|
||||
|
||||
return replay_stream()
|
||||
else:
|
||||
return response_body
|
||||
elif mode == InferenceMode.REPLAY:
|
||||
# REPLAY mode requires recording to exist
|
||||
raise RuntimeError(
|
||||
f"No recorded response found for request hash: {request_hash}\n"
|
||||
f"Request: {method} {url} {body}\n"
|
||||
f"Model: {body.get('model', 'unknown')}\n"
|
||||
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
|
||||
)
|
||||
|
||||
if mode == InferenceMode.RECORD or (mode == InferenceMode.RECORD_IF_MISSING and not recording):
|
||||
if endpoint == "/v1/models":
|
||||
response = original_method(self, *args, **kwargs)
|
||||
else:
|
||||
response = await original_method(self, *args, **kwargs)
|
||||
|
||||
# we want to store the result of the iterator, not the iterator itself
|
||||
if endpoint == "/v1/models":
|
||||
response = [m async for m in response]
|
||||
|
||||
request_data = {
|
||||
"method": method,
|
||||
"url": url,
|
||||
"headers": headers,
|
||||
"body": body,
|
||||
"endpoint": endpoint,
|
||||
"model": body.get("model", ""),
|
||||
}
|
||||
|
||||
# Determine if this is a streaming request based on request parameters
|
||||
is_streaming = body.get("stream", False)
|
||||
|
||||
if is_streaming:
|
||||
# For streaming responses, we need to collect all chunks immediately before yielding
|
||||
# This ensures the recording is saved even if the generator isn't fully consumed
|
||||
chunks = []
|
||||
async for chunk in response:
|
||||
chunks.append(chunk)
|
||||
|
||||
# Store the recording immediately
|
||||
response_data = {"body": chunks, "is_streaming": True}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
|
||||
# Return a generator that replays the stored chunks
|
||||
async def replay_recorded_stream():
|
||||
for chunk in chunks:
|
||||
yield chunk
|
||||
|
||||
return replay_stream()
|
||||
return replay_recorded_stream()
|
||||
else:
|
||||
return response_body
|
||||
elif mode == InferenceMode.REPLAY:
|
||||
# REPLAY mode requires recording to exist
|
||||
raise RuntimeError(
|
||||
f"No recorded response found for request hash: {request_hash}\n"
|
||||
f"Request: {method} {url} {body}\n"
|
||||
f"Model: {body.get('model', 'unknown')}\n"
|
||||
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
|
||||
)
|
||||
response_data = {"body": response, "is_streaming": False}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
return response
|
||||
|
||||
if mode == InferenceMode.RECORD or (mode == InferenceMode.RECORD_IF_MISSING and not recording):
|
||||
if endpoint == "/v1/models":
|
||||
response = original_method(self, *args, **kwargs)
|
||||
else:
|
||||
response = await original_method(self, *args, **kwargs)
|
||||
|
||||
# we want to store the result of the iterator, not the iterator itself
|
||||
if endpoint == "/v1/models":
|
||||
response = [m async for m in response]
|
||||
|
||||
request_data = {
|
||||
"method": method,
|
||||
"url": url,
|
||||
"headers": headers,
|
||||
"body": body,
|
||||
"endpoint": endpoint,
|
||||
"model": body.get("model", ""),
|
||||
}
|
||||
|
||||
# Determine if this is a streaming request based on request parameters
|
||||
is_streaming = body.get("stream", False)
|
||||
|
||||
if is_streaming:
|
||||
# For streaming responses, we need to collect all chunks immediately before yielding
|
||||
# This ensures the recording is saved even if the generator isn't fully consumed
|
||||
chunks = []
|
||||
async for chunk in response:
|
||||
chunks.append(chunk)
|
||||
|
||||
# Store the recording immediately
|
||||
response_data = {"body": chunks, "is_streaming": True}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
|
||||
# Return a generator that replays the stored chunks
|
||||
async def replay_recorded_stream():
|
||||
for chunk in chunks:
|
||||
yield chunk
|
||||
|
||||
return replay_recorded_stream()
|
||||
else:
|
||||
response_data = {"body": response, "is_streaming": False}
|
||||
storage.store_recording(request_hash, request_data, response_data)
|
||||
return response
|
||||
|
||||
else:
|
||||
raise AssertionError(f"Invalid mode: {mode}")
|
||||
raise AssertionError(f"Invalid mode: {mode}")
|
||||
finally:
|
||||
if test_context_token:
|
||||
_test_context.reset(test_context_token)
|
||||
|
||||
|
||||
def patch_inference_clients():
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue