mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-06 18:40:57 +00:00
metrics tests
- Add _create_metric_stub_from_protobuf method to correctly parse protobuf metrics - Add _extract_attributes_from_data_point helper method - Change metric handling to use protobuf-specific parsing instead of OpenTelemetry native parsing - Add missing typing import - Add OTEL_METRIC_EXPORT_INTERVAL environment variable for test configuration This fixes the CI failure where metrics were not being properly extracted from protobuf data in server mode tests.
This commit is contained in:
parent
415fd9e36b
commit
7a19488787
8 changed files with 420 additions and 125 deletions
|
|
@ -30,7 +30,7 @@
|
|||
"index": 0,
|
||||
"logprobs": null,
|
||||
"message": {
|
||||
"content": "import torch\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\n# Load the pre-trained model and tokenizer\nmodel_name = \"CompVis/transformers-base-uncased\"\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\ntokenizer = AutoTokenizer.from_pretrained(model_name)\n\n# Set the temperature to 0.7\ntemperature = 0.7\n\n# Define a function to generate text\ndef generate_text(prompt, max_length=100):\n input",
|
||||
"content": "To test the trace function from OpenAI's API with a temperature of 0.7, you can use the following Python code:\n\n```python\nimport json\n\n# Import the required libraries\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\n# Set the API endpoint and model name\nmodel_name = \"dalle-mini\"\n\n# Initialize the model and tokenizer\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\ntokenizer = AutoTokenizer.from_pretrained(model_name)\n\n",
|
||||
"refusal": null,
|
||||
"role": "assistant",
|
||||
"annotations": null,
|
||||
|
|
@ -55,5 +55,6 @@
|
|||
}
|
||||
},
|
||||
"is_streaming": false
|
||||
}
|
||||
},
|
||||
"id_normalization_mapping": {}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue