mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 10:10:36 +00:00
metrics tests
- Add _create_metric_stub_from_protobuf method to correctly parse protobuf metrics - Add _extract_attributes_from_data_point helper method - Change metric handling to use protobuf-specific parsing instead of OpenTelemetry native parsing - Add missing typing import - Add OTEL_METRIC_EXPORT_INTERVAL environment variable for test configuration This fixes the CI failure where metrics were not being properly extracted from protobuf data in server mode tests.
This commit is contained in:
parent
415fd9e36b
commit
7a19488787
8 changed files with 420 additions and 125 deletions
|
|
@ -4,48 +4,17 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""Telemetry tests verifying @trace_protocol decorator format across stack modes."""
|
||||
"""Telemetry tests verifying @trace_protocol decorator format across stack modes.
|
||||
|
||||
Note: The mock_otlp_collector fixture automatically clears telemetry data
|
||||
before and after each test, ensuring test isolation.
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
|
||||
def _span_attributes(span):
|
||||
attrs = getattr(span, "attributes", None)
|
||||
if attrs is None:
|
||||
return {}
|
||||
# ReadableSpan.attributes acts like a mapping
|
||||
try:
|
||||
return dict(attrs.items()) # type: ignore[attr-defined]
|
||||
except AttributeError:
|
||||
try:
|
||||
return dict(attrs)
|
||||
except TypeError:
|
||||
return attrs
|
||||
|
||||
|
||||
def _span_attr(span, key):
|
||||
attrs = _span_attributes(span)
|
||||
return attrs.get(key)
|
||||
|
||||
|
||||
def _span_trace_id(span):
|
||||
context = getattr(span, "context", None)
|
||||
if context and getattr(context, "trace_id", None) is not None:
|
||||
return f"{context.trace_id:032x}"
|
||||
return getattr(span, "trace_id", None)
|
||||
|
||||
|
||||
def _span_has_message(span, text: str) -> bool:
|
||||
args = _span_attr(span, "__args__")
|
||||
if not args or not isinstance(args, str):
|
||||
return False
|
||||
return text in args
|
||||
|
||||
|
||||
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Verify streaming adds chunk_count and __type__=async_generator."""
|
||||
mock_otlp_collector.clear()
|
||||
|
||||
stream = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Test trace openai 1"}],
|
||||
|
|
@ -62,16 +31,16 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
(
|
||||
span
|
||||
for span in reversed(spans)
|
||||
if _span_attr(span, "__type__") == "async_generator"
|
||||
and _span_attr(span, "chunk_count")
|
||||
and _span_has_message(span, "Test trace openai 1")
|
||||
if span.get_span_type() == "async_generator"
|
||||
and span.attributes.get("chunk_count")
|
||||
and span.has_message("Test trace openai 1")
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
assert async_generator_span is not None
|
||||
|
||||
raw_chunk_count = _span_attr(async_generator_span, "chunk_count")
|
||||
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
|
||||
assert raw_chunk_count is not None
|
||||
chunk_count = int(raw_chunk_count)
|
||||
|
||||
|
|
@ -80,7 +49,6 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
|
|||
|
||||
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
|
||||
"""Comprehensive validation of telemetry data format including spans and metrics."""
|
||||
mock_otlp_collector.clear()
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
|
|
@ -101,37 +69,36 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
# Verify spans
|
||||
spans = mock_otlp_collector.get_spans(expected_count=7)
|
||||
target_span = next(
|
||||
(span for span in reversed(spans) if _span_has_message(span, "Test trace openai with temperature 0.7")),
|
||||
(span for span in reversed(spans) if span.has_message("Test trace openai with temperature 0.7")),
|
||||
None,
|
||||
)
|
||||
assert target_span is not None
|
||||
|
||||
trace_id = _span_trace_id(target_span)
|
||||
trace_id = target_span.get_trace_id()
|
||||
assert trace_id is not None
|
||||
|
||||
spans = [span for span in spans if _span_trace_id(span) == trace_id]
|
||||
spans = [span for span in spans if _span_attr(span, "__root__") or _span_attr(span, "__autotraced__")]
|
||||
spans = [span for span in spans if span.get_trace_id() == trace_id]
|
||||
spans = [span for span in spans if span.is_root_span() or span.is_autotraced()]
|
||||
assert len(spans) >= 4
|
||||
|
||||
# Collect all model_ids found in spans
|
||||
logged_model_ids = []
|
||||
|
||||
for span in spans:
|
||||
attrs = _span_attributes(span)
|
||||
attrs = span.attributes
|
||||
assert attrs is not None
|
||||
|
||||
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
|
||||
is_root_span = attrs.get("__root__") is True
|
||||
|
||||
if is_root_span:
|
||||
assert attrs.get("__location__") in ["library_client", "server"]
|
||||
if span.is_root_span():
|
||||
assert span.get_location() in ["library_client", "server"]
|
||||
continue
|
||||
|
||||
assert attrs.get("__autotraced__")
|
||||
assert attrs.get("__class__") and attrs.get("__method__")
|
||||
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
|
||||
assert span.is_autotraced()
|
||||
class_name, method_name = span.get_class_method()
|
||||
assert class_name and method_name
|
||||
assert span.get_span_type() in ["async", "sync", "async_generator"]
|
||||
|
||||
args_field = attrs.get("__args__")
|
||||
args_field = span.attributes.get("__args__")
|
||||
if args_field:
|
||||
args = json.loads(args_field)
|
||||
if "model_id" in args:
|
||||
|
|
@ -140,21 +107,40 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
|
|||
# At least one span should capture the fully qualified model ID
|
||||
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
|
||||
|
||||
# TODO: re-enable this once metrics get fixed
|
||||
"""
|
||||
# Verify token usage metrics in response
|
||||
metrics = mock_otlp_collector.get_metrics()
|
||||
# Verify token usage metrics in response using polling
|
||||
expected_metrics = ["completion_tokens", "total_tokens", "prompt_tokens"]
|
||||
metrics = mock_otlp_collector.get_metrics(expected_count=len(expected_metrics), expect_model_id=text_model_id)
|
||||
assert len(metrics) > 0, "No metrics found within timeout"
|
||||
|
||||
assert metrics
|
||||
for metric in metrics:
|
||||
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
|
||||
assert metric.unit == "tokens"
|
||||
assert metric.data.data_points and len(metric.data.data_points) == 1
|
||||
match metric.name:
|
||||
case "completion_tokens":
|
||||
assert metric.data.data_points[0].value == usage["completion_tokens"]
|
||||
case "total_tokens":
|
||||
assert metric.data.data_points[0].value == usage["total_tokens"]
|
||||
case "prompt_tokens":
|
||||
assert metric.data.data_points[0].value == usage["prompt_tokens"
|
||||
"""
|
||||
# Filter metrics to only those from the specific model used in the request
|
||||
# This prevents issues when multiple metrics with the same name exist from different models
|
||||
# (e.g., when safety models like llama-guard are also called)
|
||||
inference_model_metrics = {}
|
||||
all_model_ids = set()
|
||||
|
||||
for name, metric in metrics.items():
|
||||
if name in expected_metrics:
|
||||
model_id = metric.attributes.get("model_id")
|
||||
all_model_ids.add(model_id)
|
||||
# Only include metrics from the specific model used in the test request
|
||||
if model_id == text_model_id:
|
||||
inference_model_metrics[name] = metric
|
||||
|
||||
# Verify expected metrics are present for our specific model
|
||||
for metric_name in expected_metrics:
|
||||
assert metric_name in inference_model_metrics, (
|
||||
f"Expected metric {metric_name} for model {text_model_id} not found. "
|
||||
f"Available models: {sorted(all_model_ids)}, "
|
||||
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
|
||||
)
|
||||
|
||||
# Verify metric values match usage data
|
||||
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
|
||||
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
|
||||
)
|
||||
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
|
||||
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
|
||||
)
|
||||
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
|
||||
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue