metrics tests

- Add _create_metric_stub_from_protobuf method to correctly parse protobuf metrics
- Add _extract_attributes_from_data_point helper method
- Change metric handling to use protobuf-specific parsing instead of OpenTelemetry native parsing
- Add missing typing import
- Add OTEL_METRIC_EXPORT_INTERVAL environment variable for test configuration

This fixes the CI failure where metrics were not being properly extracted from
protobuf data in server mode tests.
This commit is contained in:
Emilio Garcia 2025-11-03 10:45:30 -08:00 committed by Eric Huang
parent 415fd9e36b
commit 7a19488787
8 changed files with 420 additions and 125 deletions

View file

@ -4,48 +4,17 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Telemetry tests verifying @trace_protocol decorator format across stack modes."""
"""Telemetry tests verifying @trace_protocol decorator format across stack modes.
Note: The mock_otlp_collector fixture automatically clears telemetry data
before and after each test, ensuring test isolation.
"""
import json
def _span_attributes(span):
attrs = getattr(span, "attributes", None)
if attrs is None:
return {}
# ReadableSpan.attributes acts like a mapping
try:
return dict(attrs.items()) # type: ignore[attr-defined]
except AttributeError:
try:
return dict(attrs)
except TypeError:
return attrs
def _span_attr(span, key):
attrs = _span_attributes(span)
return attrs.get(key)
def _span_trace_id(span):
context = getattr(span, "context", None)
if context and getattr(context, "trace_id", None) is not None:
return f"{context.trace_id:032x}"
return getattr(span, "trace_id", None)
def _span_has_message(span, text: str) -> bool:
args = _span_attr(span, "__args__")
if not args or not isinstance(args, str):
return False
return text in args
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
"""Verify streaming adds chunk_count and __type__=async_generator."""
mock_otlp_collector.clear()
stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai 1"}],
@ -62,16 +31,16 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
(
span
for span in reversed(spans)
if _span_attr(span, "__type__") == "async_generator"
and _span_attr(span, "chunk_count")
and _span_has_message(span, "Test trace openai 1")
if span.get_span_type() == "async_generator"
and span.attributes.get("chunk_count")
and span.has_message("Test trace openai 1")
),
None,
)
assert async_generator_span is not None
raw_chunk_count = _span_attr(async_generator_span, "chunk_count")
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
assert raw_chunk_count is not None
chunk_count = int(raw_chunk_count)
@ -80,7 +49,6 @@ def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_mod
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
"""Comprehensive validation of telemetry data format including spans and metrics."""
mock_otlp_collector.clear()
response = llama_stack_client.chat.completions.create(
model=text_model_id,
@ -101,37 +69,36 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
# Verify spans
spans = mock_otlp_collector.get_spans(expected_count=7)
target_span = next(
(span for span in reversed(spans) if _span_has_message(span, "Test trace openai with temperature 0.7")),
(span for span in reversed(spans) if span.has_message("Test trace openai with temperature 0.7")),
None,
)
assert target_span is not None
trace_id = _span_trace_id(target_span)
trace_id = target_span.get_trace_id()
assert trace_id is not None
spans = [span for span in spans if _span_trace_id(span) == trace_id]
spans = [span for span in spans if _span_attr(span, "__root__") or _span_attr(span, "__autotraced__")]
spans = [span for span in spans if span.get_trace_id() == trace_id]
spans = [span for span in spans if span.is_root_span() or span.is_autotraced()]
assert len(spans) >= 4
# Collect all model_ids found in spans
logged_model_ids = []
for span in spans:
attrs = _span_attributes(span)
attrs = span.attributes
assert attrs is not None
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
is_root_span = attrs.get("__root__") is True
if is_root_span:
assert attrs.get("__location__") in ["library_client", "server"]
if span.is_root_span():
assert span.get_location() in ["library_client", "server"]
continue
assert attrs.get("__autotraced__")
assert attrs.get("__class__") and attrs.get("__method__")
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
assert span.is_autotraced()
class_name, method_name = span.get_class_method()
assert class_name and method_name
assert span.get_span_type() in ["async", "sync", "async_generator"]
args_field = attrs.get("__args__")
args_field = span.attributes.get("__args__")
if args_field:
args = json.loads(args_field)
if "model_id" in args:
@ -140,21 +107,40 @@ def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client,
# At least one span should capture the fully qualified model ID
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
# TODO: re-enable this once metrics get fixed
"""
# Verify token usage metrics in response
metrics = mock_otlp_collector.get_metrics()
# Verify token usage metrics in response using polling
expected_metrics = ["completion_tokens", "total_tokens", "prompt_tokens"]
metrics = mock_otlp_collector.get_metrics(expected_count=len(expected_metrics), expect_model_id=text_model_id)
assert len(metrics) > 0, "No metrics found within timeout"
assert metrics
for metric in metrics:
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
assert metric.unit == "tokens"
assert metric.data.data_points and len(metric.data.data_points) == 1
match metric.name:
case "completion_tokens":
assert metric.data.data_points[0].value == usage["completion_tokens"]
case "total_tokens":
assert metric.data.data_points[0].value == usage["total_tokens"]
case "prompt_tokens":
assert metric.data.data_points[0].value == usage["prompt_tokens"
"""
# Filter metrics to only those from the specific model used in the request
# This prevents issues when multiple metrics with the same name exist from different models
# (e.g., when safety models like llama-guard are also called)
inference_model_metrics = {}
all_model_ids = set()
for name, metric in metrics.items():
if name in expected_metrics:
model_id = metric.attributes.get("model_id")
all_model_ids.add(model_id)
# Only include metrics from the specific model used in the test request
if model_id == text_model_id:
inference_model_metrics[name] = metric
# Verify expected metrics are present for our specific model
for metric_name in expected_metrics:
assert metric_name in inference_model_metrics, (
f"Expected metric {metric_name} for model {text_model_id} not found. "
f"Available models: {sorted(all_model_ids)}, "
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
)
# Verify metric values match usage data
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
)
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
)
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
)