Merge branch 'main' into providers

This commit is contained in:
Francisco Arceo 2025-05-27 19:41:11 -06:00 committed by GitHub
commit 7a701d5020
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 3099 additions and 2594 deletions

View file

@ -13,7 +13,7 @@ runs:
- name: Install dependencies
shell: bash
run: |
uv sync --all-extras
uv sync --all-groups
uv pip install ollama faiss-cpu
# always test against the latest version of the client
# TODO: this is not necessarily a good idea. we need to test against both published and latest

View file

@ -53,7 +53,7 @@ repos:
- black==24.3.0
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.6.3
rev: 0.7.8
hooks:
- id: uv-lock
- id: uv-export
@ -61,6 +61,7 @@ repos:
"--frozen",
"--no-hashes",
"--no-emit-project",
"--no-default-groups",
"--output-file=requirements.txt"
]
@ -88,8 +89,8 @@ repos:
- id: distro-codegen
name: Distribution Template Codegen
additional_dependencies:
- uv==0.6.0
entry: uv run --extra codegen ./scripts/distro_codegen.py
- uv==0.7.8
entry: uv run --group codegen ./scripts/distro_codegen.py
language: python
pass_filenames: false
require_serial: true
@ -97,8 +98,8 @@ repos:
- id: openapi-codegen
name: API Spec Codegen
additional_dependencies:
- uv==0.6.2
entry: sh -c 'uv run --with ".[dev]" ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
- uv==0.7.8
entry: sh -c 'uv run ./docs/openapi_generator/run_openapi_generator.sh > /dev/null'
language: python
pass_filenames: false
require_serial: true

View file

@ -5,28 +5,21 @@
# Required
version: 2
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Set the OS, Python version and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.12"
# You can also specify other tool versions:
# nodejs: "19"
# rust: "1.64"
# golang: "1.19"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Optionally build your docs in additional formats such as PDF and ePub
# formats:
# - pdf
# - epub
# Optional but recommended, declare the Python requirements required
# to build your documentation
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
jobs:
pre_create_environment:
- asdf plugin add uv
- asdf install uv latest
- asdf global uv latest
create_environment:
- uv venv "${READTHEDOCS_VIRTUALENV_PATH}"
install:
- requirements: docs/requirements.txt
- UV_PROJECT_ENVIRONMENT="${READTHEDOCS_VIRTUALENV_PATH}" uv sync --frozen --group docs

View file

@ -7540,6 +7540,9 @@
{
"$ref": "#/components/schemas/OpenAIResponseObjectStreamResponseCreated"
},
{
"$ref": "#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta"
},
{
"$ref": "#/components/schemas/OpenAIResponseObjectStreamResponseCompleted"
}
@ -7548,6 +7551,7 @@
"propertyName": "type",
"mapping": {
"response.created": "#/components/schemas/OpenAIResponseObjectStreamResponseCreated",
"response.output_text.delta": "#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta",
"response.completed": "#/components/schemas/OpenAIResponseObjectStreamResponseCompleted"
}
}
@ -7590,6 +7594,41 @@
],
"title": "OpenAIResponseObjectStreamResponseCreated"
},
"OpenAIResponseObjectStreamResponseOutputTextDelta": {
"type": "object",
"properties": {
"content_index": {
"type": "integer"
},
"delta": {
"type": "string"
},
"item_id": {
"type": "string"
},
"output_index": {
"type": "integer"
},
"sequence_number": {
"type": "integer"
},
"type": {
"type": "string",
"const": "response.output_text.delta",
"default": "response.output_text.delta"
}
},
"additionalProperties": false,
"required": [
"content_index",
"delta",
"item_id",
"output_index",
"sequence_number",
"type"
],
"title": "OpenAIResponseObjectStreamResponseOutputTextDelta"
},
"CreateUploadSessionRequest": {
"type": "object",
"properties": {

View file

@ -5294,11 +5294,13 @@ components:
OpenAIResponseObjectStream:
oneOf:
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta'
- $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted'
discriminator:
propertyName: type
mapping:
response.created: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated'
response.output_text.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta'
response.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted'
"OpenAIResponseObjectStreamResponseCompleted":
type: object
@ -5330,6 +5332,33 @@ components:
- type
title: >-
OpenAIResponseObjectStreamResponseCreated
"OpenAIResponseObjectStreamResponseOutputTextDelta":
type: object
properties:
content_index:
type: integer
delta:
type: string
item_id:
type: string
output_index:
type: integer
sequence_number:
type: integer
type:
type: string
const: response.output_text.delta
default: response.output_text.delta
additionalProperties: false
required:
- content_index
- delta
- item_id
- output_index
- sequence_number
- type
title: >-
OpenAIResponseObjectStreamResponseOutputTextDelta
CreateUploadSessionRequest:
type: object
properties:

View file

@ -149,6 +149,16 @@ class OpenAIResponseObjectStreamResponseCreated(BaseModel):
type: Literal["response.created"] = "response.created"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
content_index: int
delta: str
item_id: str
output_index: int
sequence_number: int
type: Literal["response.output_text.delta"] = "response.output_text.delta"
@json_schema_type
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
response: OpenAIResponseObject
@ -156,7 +166,9 @@ class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
OpenAIResponseObjectStream = Annotated[
OpenAIResponseObjectStreamResponseCreated | OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseCreated
| OpenAIResponseObjectStreamResponseOutputTextDelta
| OpenAIResponseObjectStreamResponseCompleted,
Field(discriminator="type"),
]
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import json
import time
import uuid
from collections.abc import AsyncIterator
from typing import Any, cast
@ -29,10 +30,12 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseObjectStreamResponseOutputTextDelta,
OpenAIResponseOutput,
OpenAIResponseOutputMessageContent,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
)
from llama_stack.apis.inference.inference import (
@ -255,110 +258,14 @@ class OpenAIResponsesImpl:
"""
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
async def create_openai_response(
async def _process_response_choices(
self,
input: str | list[OpenAIResponseInput],
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
):
chat_response: OpenAIChatCompletion,
ctx: ChatCompletionContext,
tools: list[OpenAIResponseInputTool] | None,
) -> list[OpenAIResponseOutput]:
"""Handle tool execution and response message creation."""
output_messages: list[OpenAIResponseOutput] = []
stream = False if stream is None else stream
# Huge TODO: we need to run this in a loop, until morale improves
# Create context to run "chat completion"
input = await self._prepend_previous_response(input, previous_response_id)
messages = await _convert_response_input_to_chat_messages(input)
await self._prepend_instructions(messages, instructions)
chat_tools, mcp_tool_to_server, mcp_list_message = (
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
)
if mcp_list_message:
output_messages.append(mcp_list_message)
ctx = ChatCompletionContext(
model=model,
messages=messages,
tools=chat_tools,
mcp_tool_to_server=mcp_tool_to_server,
stream=stream,
temperature=temperature,
)
# Run inference
chat_response = await self.inference_api.openai_chat_completion(
model=model,
messages=messages,
tools=chat_tools,
stream=stream,
temperature=temperature,
)
# Collect output
if stream:
# TODO: refactor this into a separate method that handles streaming
chat_response_id = ""
chat_response_content = []
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
# TODO: these chunk_ fields are hacky and only take the last chunk into account
chunk_created = 0
chunk_model = ""
chunk_finish_reason = ""
async for chunk in chat_response:
chat_response_id = chunk.id
chunk_created = chunk.created
chunk_model = chunk.model
for chunk_choice in chunk.choices:
# TODO: this only works for text content
chat_response_content.append(chunk_choice.delta.content or "")
if chunk_choice.finish_reason:
chunk_finish_reason = chunk_choice.finish_reason
# Aggregate tool call arguments across chunks, using their index as the aggregation key
if chunk_choice.delta.tool_calls:
for tool_call in chunk_choice.delta.tool_calls:
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
if response_tool_call:
response_tool_call.function.arguments += tool_call.function.arguments
else:
tool_call_dict: dict[str, Any] = tool_call.model_dump()
# Ensure we don't have any empty type field in the tool call dict.
# The OpenAI client used by providers often returns a type=None here.
tool_call_dict.pop("type", None)
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
chat_response_tool_calls[tool_call.index] = response_tool_call
# Convert the dict of tool calls by index to a list of tool calls to pass back in our response
if chat_response_tool_calls:
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
else:
tool_calls = None
assistant_message = OpenAIAssistantMessageParam(
content="".join(chat_response_content),
tool_calls=tool_calls,
)
chat_response = OpenAIChatCompletion(
id=chat_response_id,
choices=[
OpenAIChoice(
message=assistant_message,
finish_reason=chunk_finish_reason,
index=0,
)
],
created=chunk_created,
model=chunk_model,
)
else:
# dump and reload to map to our pydantic types
chat_response = OpenAIChatCompletion(**chat_response.model_dump())
# Execute tool calls if any
for choice in chat_response.choices:
if choice.message.tool_calls and tools:
@ -380,23 +287,17 @@ class OpenAIResponsesImpl:
else:
output_messages.append(await _convert_chat_choice_to_response_message(choice))
# Create response object
response = OpenAIResponseObject(
created_at=chat_response.created,
id=f"resp-{uuid.uuid4()}",
model=model,
object="response",
status="completed",
output=output_messages,
)
logger.debug(f"OpenAI Responses response: {response}")
return output_messages
# Store response if requested
if store:
async def _store_response(
self,
response: OpenAIResponseObject,
original_input: str | list[OpenAIResponseInput],
) -> None:
new_input_id = f"msg_{uuid.uuid4()}"
if isinstance(input, str):
if isinstance(original_input, str):
# synthesize a message from the input string
input_content = OpenAIResponseInputMessageContentText(text=input)
input_content = OpenAIResponseInputMessageContentText(text=original_input)
input_content_item = OpenAIResponseMessage(
role="user",
content=[input_content],
@ -406,7 +307,7 @@ class OpenAIResponsesImpl:
else:
# we already have a list of messages
input_items_data = []
for input_item in input:
for input_item in original_input:
if isinstance(input_item, OpenAIResponseMessage):
# These may or may not already have an id, so dump to dict, check for id, and add if missing
input_item_dict = input_item.model_dump()
@ -421,17 +322,234 @@ class OpenAIResponsesImpl:
input=input_items_data,
)
async def create_openai_response(
self,
input: str | list[OpenAIResponseInput],
model: str,
instructions: str | None = None,
previous_response_id: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
):
stream = False if stream is None else stream
original_input = input # Keep reference for storage
output_messages: list[OpenAIResponseOutput] = []
# Input preprocessing
input = await self._prepend_previous_response(input, previous_response_id)
messages = await _convert_response_input_to_chat_messages(input)
await self._prepend_instructions(messages, instructions)
# Tool setup
chat_tools, mcp_tool_to_server, mcp_list_message = (
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
)
if mcp_list_message:
output_messages.append(mcp_list_message)
ctx = ChatCompletionContext(
model=model,
messages=messages,
tools=chat_tools,
mcp_tool_to_server=mcp_tool_to_server,
stream=stream,
temperature=temperature,
)
inference_result = await self.inference_api.openai_chat_completion(
model=model,
messages=messages,
tools=chat_tools,
stream=stream,
temperature=temperature,
)
if stream:
return self._create_streaming_response(
inference_result=inference_result,
ctx=ctx,
output_messages=output_messages,
original_input=original_input,
model=model,
store=store,
tools=tools,
)
else:
return await self._create_non_streaming_response(
inference_result=inference_result,
ctx=ctx,
output_messages=output_messages,
original_input=original_input,
model=model,
store=store,
tools=tools,
)
async def async_response() -> AsyncIterator[OpenAIResponseObjectStream]:
# TODO: response created should actually get emitted much earlier in the process
yield OpenAIResponseObjectStreamResponseCreated(response=response)
yield OpenAIResponseObjectStreamResponseCompleted(response=response)
async def _create_non_streaming_response(
self,
inference_result: Any,
ctx: ChatCompletionContext,
output_messages: list[OpenAIResponseOutput],
original_input: str | list[OpenAIResponseInput],
model: str,
store: bool | None,
tools: list[OpenAIResponseInputTool] | None,
) -> OpenAIResponseObject:
chat_response = OpenAIChatCompletion(**inference_result.model_dump())
return async_response()
# Process response choices (tool execution and message creation)
output_messages.extend(
await self._process_response_choices(
chat_response=chat_response,
ctx=ctx,
tools=tools,
)
)
response = OpenAIResponseObject(
created_at=chat_response.created,
id=f"resp-{uuid.uuid4()}",
model=model,
object="response",
status="completed",
output=output_messages,
)
logger.debug(f"OpenAI Responses response: {response}")
# Store response if requested
if store:
await self._store_response(
response=response,
original_input=original_input,
)
return response
async def _create_streaming_response(
self,
inference_result: Any,
ctx: ChatCompletionContext,
output_messages: list[OpenAIResponseOutput],
original_input: str | list[OpenAIResponseInput],
model: str,
store: bool | None,
tools: list[OpenAIResponseInputTool] | None,
) -> AsyncIterator[OpenAIResponseObjectStream]:
# Create initial response and emit response.created immediately
response_id = f"resp-{uuid.uuid4()}"
created_at = int(time.time())
initial_response = OpenAIResponseObject(
created_at=created_at,
id=response_id,
model=model,
object="response",
status="in_progress",
output=output_messages.copy(),
)
# Emit response.created immediately
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
# For streaming, inference_result is an async iterator of chunks
# Stream chunks and emit delta events as they arrive
chat_response_id = ""
chat_response_content = []
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
chunk_created = 0
chunk_model = ""
chunk_finish_reason = ""
sequence_number = 0
# Create a placeholder message item for delta events
message_item_id = f"msg_{uuid.uuid4()}"
async for chunk in inference_result:
chat_response_id = chunk.id
chunk_created = chunk.created
chunk_model = chunk.model
for chunk_choice in chunk.choices:
# Emit incremental text content as delta events
if chunk_choice.delta.content:
sequence_number += 1
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
content_index=0,
delta=chunk_choice.delta.content,
item_id=message_item_id,
output_index=0,
sequence_number=sequence_number,
)
# Collect content for final response
chat_response_content.append(chunk_choice.delta.content or "")
if chunk_choice.finish_reason:
chunk_finish_reason = chunk_choice.finish_reason
# Aggregate tool call arguments across chunks, using their index as the aggregation key
if chunk_choice.delta.tool_calls:
for tool_call in chunk_choice.delta.tool_calls:
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
if response_tool_call:
response_tool_call.function.arguments += tool_call.function.arguments
else:
tool_call_dict: dict[str, Any] = tool_call.model_dump()
tool_call_dict.pop("type", None)
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
chat_response_tool_calls[tool_call.index] = response_tool_call
# Convert collected chunks to complete response
if chat_response_tool_calls:
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
else:
tool_calls = None
assistant_message = OpenAIAssistantMessageParam(
content="".join(chat_response_content),
tool_calls=tool_calls,
)
chat_response_obj = OpenAIChatCompletion(
id=chat_response_id,
choices=[
OpenAIChoice(
message=assistant_message,
finish_reason=chunk_finish_reason,
index=0,
)
],
created=chunk_created,
model=chunk_model,
)
# Process response choices (tool execution and message creation)
output_messages.extend(
await self._process_response_choices(
chat_response=chat_response_obj,
ctx=ctx,
tools=tools,
)
)
# Create final response
final_response = OpenAIResponseObject(
created_at=created_at,
id=response_id,
model=model,
object="response",
status="completed",
output=output_messages,
)
if store:
await self._store_response(
response=final_response,
original_input=original_input,
)
# Emit response.completed
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
async def _convert_response_tools_to_chat_tools(
self, tools: list[OpenAIResponseInputTool]
) -> tuple[
@ -441,7 +559,6 @@ class OpenAIResponsesImpl:
]:
from llama_stack.apis.agents.openai_responses import (
MCPListToolsTool,
OpenAIResponseOutputMessageMCPListTools,
)
from llama_stack.apis.tools.tools import Tool

View file

@ -34,12 +34,17 @@ class VLLMInferenceAdapterConfig(BaseModel):
@classmethod
def validate_tls_verify(cls, v):
if isinstance(v, str):
cert_path = Path(v)
# Check if it's a boolean string
if v.lower() in ("true", "false"):
return v.lower() == "true"
# Otherwise, treat it as a cert path
cert_path = Path(v).expanduser().resolve()
if not cert_path.exists():
raise ValueError(f"TLS certificate file does not exist: {v}")
if not cert_path.is_file():
raise ValueError(f"TLS certificate path is not a file: {v}")
return v
return v
@classmethod
def sample_run_config(

View file

@ -1402,9 +1402,8 @@ class OpenAIChatCompletionToLlamaStackMixin:
outstanding_responses: list[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]],
):
id = f"chatcmpl-{uuid.uuid4()}"
for outstanding_response in outstanding_responses:
for i, outstanding_response in enumerate(outstanding_responses):
response = await outstanding_response
i = 0
async for chunk in response:
event = chunk.event
finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason)
@ -1459,7 +1458,6 @@ class OpenAIChatCompletionToLlamaStackMixin:
model=model,
object="chat.completion.chunk",
)
i = i + 1
async def _process_non_stream_response(
self, model: str, outstanding_responses: list[Awaitable[ChatCompletionResponse]]

View file

@ -19,7 +19,7 @@
"@radix-ui/react-tooltip": "^1.2.6",
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"llama-stack-client": "github:stainless-sdks/llama-stack-node#ehhuang/dev",
"llama-stack-client": "0.2.8",
"lucide-react": "^0.510.0",
"next": "15.3.2",
"next-themes": "^0.4.6",

View file

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "llama_stack"
version = "0.2.7"
version = "0.2.8"
authors = [{ name = "Meta Llama", email = "llama-oss@meta.com" }]
description = "Llama Stack"
readme = "README.md"
@ -26,7 +26,7 @@ dependencies = [
"huggingface-hub",
"jinja2>=3.1.6",
"jsonschema",
"llama-stack-client>=0.2.7",
"llama-stack-client>=0.2.8",
"openai>=1.66",
"prompt-toolkit",
"python-dotenv",
@ -42,6 +42,14 @@ dependencies = [
]
[project.optional-dependencies]
ui = [
"streamlit",
"pandas",
"llama-stack-client>=0.2.8",
"streamlit-option-menu",
]
[dependency-groups]
dev = [
"pytest",
"pytest-timeout",
@ -112,12 +120,6 @@ docs = [
"sphinxcontrib.openapi",
]
codegen = ["rich", "pydantic", "jinja2>=3.1.6"]
ui = [
"streamlit",
"pandas",
"llama-stack-client>=0.2.7",
"streamlit-option-menu",
]
[project.urls]
Homepage = "https://github.com/meta-llama/llama-stack"

View file

@ -1,60 +1,175 @@
# This file was autogenerated by uv via the following command:
# uv export --frozen --no-hashes --no-emit-project --output-file=requirements.txt
# uv export --frozen --no-hashes --no-emit-project --no-default-groups --output-file=requirements.txt
annotated-types==0.7.0
# via pydantic
anyio==4.8.0
# via
# httpx
# llama-stack-client
# openai
attrs==25.1.0
# via
# jsonschema
# referencing
certifi==2025.1.31
# via
# httpcore
# httpx
# requests
charset-normalizer==3.4.1
# via requests
click==8.1.8
# via llama-stack-client
colorama==0.4.6 ; sys_platform == 'win32'
# via
# click
# tqdm
distro==1.9.0
# via
# llama-stack-client
# openai
ecdsa==0.19.1
# via python-jose
exceptiongroup==1.2.2 ; python_full_version < '3.11'
# via anyio
filelock==3.17.0
# via huggingface-hub
fire==0.7.0
# via llama-stack
fsspec==2024.12.0
# via huggingface-hub
h11==0.16.0
# via
# httpcore
# llama-stack
httpcore==1.0.9
# via httpx
httpx==0.28.1
# via
# llama-stack
# llama-stack-client
# openai
huggingface-hub==0.29.0
# via llama-stack
idna==3.10
# via
# anyio
# httpx
# requests
jinja2==3.1.6
# via llama-stack
jiter==0.8.2
# via openai
jsonschema==4.23.0
# via llama-stack
jsonschema-specifications==2024.10.1
llama-stack-client==0.2.7
# via jsonschema
llama-stack-client==0.2.8
# via llama-stack
markdown-it-py==3.0.0
# via rich
markupsafe==3.0.2
# via jinja2
mdurl==0.1.2
# via markdown-it-py
numpy==2.2.3
# via pandas
openai==1.71.0
# via llama-stack
packaging==24.2
# via huggingface-hub
pandas==2.2.3
# via llama-stack-client
pillow==11.1.0
# via llama-stack
prompt-toolkit==3.0.50
# via
# llama-stack
# llama-stack-client
pyaml==25.1.0
# via llama-stack-client
pyasn1==0.4.8
# via
# python-jose
# rsa
pydantic==2.10.6
# via
# llama-stack
# llama-stack-client
# openai
pydantic-core==2.27.2
# via pydantic
pygments==2.19.1
# via rich
python-dateutil==2.9.0.post0
# via pandas
python-dotenv==1.0.1
# via llama-stack
python-jose==3.4.0
# via llama-stack
pytz==2025.1
# via pandas
pyyaml==6.0.2
# via
# huggingface-hub
# pyaml
referencing==0.36.2
# via
# jsonschema
# jsonschema-specifications
regex==2024.11.6
# via tiktoken
requests==2.32.3
# via
# huggingface-hub
# llama-stack
# tiktoken
rich==13.9.4
# via
# llama-stack
# llama-stack-client
rpds-py==0.22.3
# via
# jsonschema
# referencing
rsa==4.9
# via python-jose
setuptools==80.8.0
# via llama-stack
six==1.17.0
# via
# ecdsa
# python-dateutil
sniffio==1.3.1
# via
# anyio
# llama-stack-client
# openai
termcolor==2.5.0
# via
# fire
# llama-stack
# llama-stack-client
tiktoken==0.9.0
# via llama-stack
tqdm==4.67.1
# via
# huggingface-hub
# llama-stack-client
# openai
typing-extensions==4.12.2
# via
# anyio
# huggingface-hub
# llama-stack-client
# openai
# pydantic
# pydantic-core
# referencing
# rich
tzdata==2025.1
# via pandas
urllib3==2.3.0
# via requests
wcwidth==0.2.13
# via prompt-toolkit

View file

@ -10,10 +10,10 @@ PYTHON_VERSION=${PYTHON_VERSION:-3.10}
command -v uv >/dev/null 2>&1 || { echo >&2 "uv is required but it's not installed. Exiting."; exit 1; }
uv python find $PYTHON_VERSION
uv python find "$PYTHON_VERSION"
FOUND_PYTHON=$?
if [ $FOUND_PYTHON -ne 0 ]; then
uv python install $PYTHON_VERSION
uv python install "$PYTHON_VERSION"
fi
uv run --python $PYTHON_VERSION --with-editable . --with-editable ".[dev]" --with-editable ".[unit]" pytest --asyncio-mode=auto -s -v tests/unit/ $@
uv run --python "$PYTHON_VERSION" --with-editable . --group unit pytest --asyncio-mode=auto -s -v tests/unit/ $@

View file

@ -41,7 +41,6 @@ def openai_client(client_with_models):
],
],
)
@pytest.mark.skip(reason="Very flaky, sometimes there is a message not a function call, standard tool calling issues")
def test_responses_store(openai_client, client_with_models, text_model_id, stream, tools):
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
@ -68,13 +67,15 @@ def test_responses_store(openai_client, client_with_models, text_model_id, strea
for chunk in response:
if response_id is None:
response_id = chunk.response.id
if not tools:
if chunk.type == "response.completed":
response_id = chunk.response.id
output_type = chunk.response.output[0].type
if output_type == "message":
content = chunk.response.output[0].content[0].text
else:
response_id = response.id
if not tools:
output_type = response.output[0].type
if output_type == "message":
content = response.output[0].content[0].text
# list responses - use the underlying HTTP client for endpoints not in SDK
@ -87,9 +88,8 @@ def test_responses_store(openai_client, client_with_models, text_model_id, strea
retrieved_response = client.responses.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.model == text_model_id
if tools:
assert retrieved_response.output[0].type == "function_call"
else:
assert retrieved_response.output[0].type == output_type, retrieved_response
if output_type == "message":
assert retrieved_response.output[0].content[0].text == content

View file

@ -224,6 +224,43 @@ def test_openai_chat_completion_streaming(compat_client, client_with_models, tex
assert expected.lower() in "".join(streamed_content)
@pytest.mark.parametrize(
"test_case",
[
"inference:chat_completion:streaming_01",
"inference:chat_completion:streaming_02",
],
)
def test_openai_chat_completion_streaming_with_n(compat_client, client_with_models, text_model_id, test_case):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
provider = provider_from_model(client_with_models, text_model_id)
if provider.provider_type == "remote::ollama":
pytest.skip(f"Model {text_model_id} hosted by {provider.provider_type} doesn't support n > 1.")
tc = TestCase(test_case)
question = tc["question"]
expected = tc["expected"]
response = compat_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
timeout=120, # Increase timeout to 2 minutes for large conversation history,
n=2,
)
streamed_content = {}
for chunk in response:
for choice in chunk.choices:
if choice.delta.content:
streamed_content[choice.index] = (
streamed_content.get(choice.index, "") + choice.delta.content.lower().strip()
)
assert len(streamed_content) == 2
for i, content in streamed_content.items():
assert expected.lower() in content, f"Choice {i}: Expected {expected.lower()} in {content}"
@pytest.mark.parametrize(
"stream",
[
@ -231,7 +268,6 @@ def test_openai_chat_completion_streaming(compat_client, client_with_models, tex
False,
],
)
@pytest.mark.skip(reason="Very flaky, keeps failing on CI")
def test_inference_store(openai_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = openai_client
@ -254,6 +290,7 @@ def test_inference_store(openai_client, client_with_models, text_model_id, strea
for chunk in response:
if response_id is None:
response_id = chunk.id
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
else:
response_id = response.id
@ -264,8 +301,8 @@ def test_inference_store(openai_client, client_with_models, text_model_id, strea
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.input_messages[0]["content"] == message
assert retrieved_response.choices[0].message.content == content
assert retrieved_response.input_messages[0]["content"] == message, retrieved_response
assert retrieved_response.choices[0].message.content == content, retrieved_response
@pytest.mark.parametrize(
@ -275,7 +312,6 @@ def test_inference_store(openai_client, client_with_models, text_model_id, strea
False,
],
)
@pytest.mark.skip(reason="Very flaky, tool calling really wacky on CI")
def test_inference_store_tool_calls(openai_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = openai_client
@ -313,7 +349,9 @@ def test_inference_store_tool_calls(openai_client, client_with_models, text_mode
for chunk in response:
if response_id is None:
response_id = chunk.id
content += chunk.choices[0].delta.content
if delta := chunk.choices[0].delta:
if delta.content:
content += delta.content
else:
response_id = response.id
content = response.choices[0].message.content
@ -324,5 +362,11 @@ def test_inference_store_tool_calls(openai_client, client_with_models, text_mode
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.input_messages[0]["content"] == message
assert retrieved_response.choices[0].message.tool_calls[0].function.name == "get_weather"
assert retrieved_response.choices[0].message.tool_calls[0].function.arguments == '{"city":"Tokyo"}'
tool_calls = retrieved_response.choices[0].message.tool_calls
# sometimes model doesn't ouptut tool calls, but we still want to test that the tool was called
if tool_calls:
assert len(tool_calls) == 1
assert tool_calls[0].function.name == "get_weather"
assert "tokyo" in tool_calls[0].function.arguments.lower()
else:
assert retrieved_response.choices[0].message.content == content

View file

@ -232,9 +232,17 @@ async def test_create_openai_response_with_tool_call_type_none(openai_responses_
# Check that we got the content from our mocked tool execution result
chunks = [chunk async for chunk in result]
assert len(chunks) > 0
assert chunks[0].response.output[0].type == "function_call"
assert chunks[0].response.output[0].name == "get_weather"
assert len(chunks) == 2 # Should have response.created and response.completed
# Check response.created event (should have empty output)
assert chunks[0].type == "response.created"
assert len(chunks[0].response.output) == 0
# Check response.completed event (should have the tool call)
assert chunks[1].type == "response.completed"
assert len(chunks[1].response.output) == 1
assert chunks[1].response.output[0].type == "function_call"
assert chunks[1].response.output[0].name == "get_weather"
@pytest.mark.asyncio

View file

@ -10,17 +10,17 @@ from tests.verifications.openai_api.fixtures.fixtures import _load_all_verificat
def pytest_generate_tests(metafunc):
"""Dynamically parametrize tests based on the selected provider and config."""
if "model" in metafunc.fixturenames:
model = metafunc.config.getoption("model")
if model:
metafunc.parametrize("model", [model])
return
provider = metafunc.config.getoption("provider")
if not provider:
print("Warning: --provider not specified. Skipping model parametrization.")
metafunc.parametrize("model", [])
return
model = metafunc.config.getoption("model")
if model:
metafunc.parametrize("model", [model])
return
try:
config_data = _load_all_verification_configs()
except (OSError, FileNotFoundError) as e:

View file

@ -77,11 +77,12 @@ test_response_image:
image_url: "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg"
output: "llama"
# the models are really poor at tool calling after seeing images :/
test_response_multi_turn_image:
test_name: test_response_multi_turn_image
test_params:
case:
- case_id: "llama_image_search"
- case_id: "llama_image_understanding"
turns:
- input:
- role: user
@ -91,7 +92,5 @@ test_response_multi_turn_image:
- type: input_image
image_url: "https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg"
output: "llama"
- input: "Search the web using the search tool for the animal from the previous response. Your search query should be a single phrase that includes the animal's name and the words 'maverick', 'scout' and 'llm'"
tools:
- type: web_search
output: "model"
- input: "What country do you find this animal primarily in? What continent?"
output: "peru"

View file

@ -7,6 +7,7 @@
import json
import httpx
import openai
import pytest
from llama_stack import LlamaStackAsLibraryClient
@ -61,23 +62,151 @@ def test_response_streaming_basic(request, openai_client, model, provider, verif
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
import time
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=True,
)
streamed_content = []
# Track events and timing to verify proper streaming
events = []
event_times = []
response_id = ""
start_time = time.time()
for chunk in response:
if chunk.type == "response.completed":
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
if chunk.type == "response.created":
# Verify response.created is emitted first and immediately
assert len(events) == 1, "response.created should be the first event"
assert event_times[0] < 0.1, "response.created should be emitted immediately"
assert chunk.response.status == "in_progress"
response_id = chunk.response.id
streamed_content.append(chunk.response.output_text.strip())
assert len(streamed_content) > 0
assert case["output"].lower() in "".join(streamed_content).lower()
elif chunk.type == "response.completed":
# Verify response.completed comes after response.created
assert len(events) >= 2, "response.completed should come after response.created"
assert chunk.response.status == "completed"
assert chunk.response.id == response_id, "Response ID should be consistent"
# Verify content quality
output_text = chunk.response.output_text.lower().strip()
assert len(output_text) > 0, "Response should have content"
assert case["output"].lower() in output_text, f"Expected '{case['output']}' in response"
# Verify we got both required events
event_types = [event.type for event in events]
assert "response.created" in event_types, "Missing response.created event"
assert "response.completed" in event_types, "Missing response.completed event"
# Verify event order
created_index = event_types.index("response.created")
completed_index = event_types.index("response.completed")
assert created_index < completed_index, "response.created should come before response.completed"
# Verify stored response matches streamed response
retrieved_response = openai_client.responses.retrieve(response_id=response_id)
assert retrieved_response.output_text == "".join(streamed_content)
final_event = events[-1]
assert retrieved_response.output_text == final_event.response.output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_streaming_incremental_content(request, openai_client, model, provider, verification_config, case):
"""Test that streaming actually delivers content incrementally, not just at the end."""
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
import time
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=True,
)
# Track all events and their content to verify incremental streaming
events = []
content_snapshots = []
event_times = []
start_time = time.time()
for chunk in response:
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
# Track content at each event based on event type
if chunk.type == "response.output_text.delta":
# For delta events, track the delta content
content_snapshots.append(chunk.delta)
elif hasattr(chunk, "response") and hasattr(chunk.response, "output_text"):
# For response.created/completed events, track the full output_text
content_snapshots.append(chunk.response.output_text)
else:
content_snapshots.append("")
# Verify we have the expected events
event_types = [event.type for event in events]
assert "response.created" in event_types, "Missing response.created event"
assert "response.completed" in event_types, "Missing response.completed event"
# Check if we have incremental content updates
created_index = event_types.index("response.created")
completed_index = event_types.index("response.completed")
# The key test: verify content progression
created_content = content_snapshots[created_index]
completed_content = content_snapshots[completed_index]
# Verify that response.created has empty or minimal content
assert len(created_content) == 0, f"response.created should have empty content, got: {repr(created_content[:100])}"
# Verify that response.completed has the full content
assert len(completed_content) > 0, "response.completed should have content"
assert case["output"].lower() in completed_content.lower(), f"Expected '{case['output']}' in final content"
# Check for true incremental streaming by looking for delta events
delta_events = [i for i, event_type in enumerate(event_types) if event_type == "response.output_text.delta"]
# Assert that we have delta events (true incremental streaming)
assert len(delta_events) > 0, "Expected delta events for true incremental streaming, but found none"
# Verify delta events have content and accumulate to final content
delta_content_total = ""
non_empty_deltas = 0
for delta_idx in delta_events:
delta_content = content_snapshots[delta_idx]
if delta_content:
delta_content_total += delta_content
non_empty_deltas += 1
# Assert that we have meaningful delta content
assert non_empty_deltas > 0, "Delta events found but none contain content"
assert len(delta_content_total) > 0, "Delta events found but total delta content is empty"
# Verify that the accumulated delta content matches the final content
assert delta_content_total.strip() == completed_content.strip(), (
f"Delta content '{delta_content_total}' should match final content '{completed_content}'"
)
# Verify timing: delta events should come between created and completed
for delta_idx in delta_events:
assert created_index < delta_idx < completed_index, (
f"Delta event at index {delta_idx} should be between created ({created_index}) and completed ({completed_index})"
)
@pytest.mark.parametrize(
@ -178,7 +307,7 @@ def test_response_non_streaming_mcp_tool(request, openai_client, model, provider
exc_type = (
AuthenticationRequiredError
if isinstance(openai_client, LlamaStackAsLibraryClient)
else httpx.HTTPStatusError
else (httpx.HTTPStatusError, openai.AuthenticationError)
)
with pytest.raises(exc_type):
openai_client.responses.create(

4762
uv.lock generated

File diff suppressed because it is too large Load diff