mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-13 16:46:09 +00:00
add databricks provider (#83)
* add databricks provider * update provider and test
This commit is contained in:
parent
f73e247ba1
commit
7abab7604b
5 changed files with 316 additions and 0 deletions
|
@ -0,0 +1,10 @@
|
||||||
|
name: local-databricks
|
||||||
|
distribution_spec:
|
||||||
|
description: Use Databricks for running LLM inference
|
||||||
|
providers:
|
||||||
|
inference: remote::databricks
|
||||||
|
memory: meta-reference
|
||||||
|
safety: meta-reference
|
||||||
|
agents: meta-reference
|
||||||
|
telemetry: meta-reference
|
||||||
|
image_type: conda
|
|
@ -0,0 +1,16 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from .config import DatabricksImplConfig
|
||||||
|
from .databricks import DatabricksInferenceAdapter
|
||||||
|
|
||||||
|
async def get_adapter_impl(config: DatabricksImplConfig, _deps):
|
||||||
|
assert isinstance(
|
||||||
|
config, DatabricksImplConfig
|
||||||
|
), f"Unexpected config type: {type(config)}"
|
||||||
|
impl = DatabricksInferenceAdapter(config)
|
||||||
|
await impl.initialize()
|
||||||
|
return impl
|
|
@ -0,0 +1,22 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from llama_models.schema_utils import json_schema_type
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class DatabricksImplConfig(BaseModel):
|
||||||
|
url: str = Field(
|
||||||
|
default=None,
|
||||||
|
description="The URL for the Databricks model serving endpoint",
|
||||||
|
)
|
||||||
|
api_token: str = Field(
|
||||||
|
default=None,
|
||||||
|
description="The Databricks API token",
|
||||||
|
)
|
|
@ -0,0 +1,257 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import AsyncGenerator
|
||||||
|
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
from llama_models.llama3.api.chat_format import ChatFormat
|
||||||
|
|
||||||
|
from llama_models.llama3.api.datatypes import Message, StopReason
|
||||||
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||||
|
from llama_models.sku_list import resolve_model
|
||||||
|
|
||||||
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
|
from llama_stack.providers.utils.inference.augment_messages import (
|
||||||
|
augment_messages_for_tools,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .config import DatabricksImplConfig
|
||||||
|
|
||||||
|
DATABRICKS_SUPPORTED_MODELS = {
|
||||||
|
"Llama3.1-70B-Instruct": "databricks-meta-llama-3-1-70b-instruct",
|
||||||
|
"Llama3.1-405B-Instruct": "databricks-meta-llama-3-1-405b-instruct",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class DatabricksInferenceAdapter(Inference):
|
||||||
|
def __init__(self, config: DatabricksImplConfig) -> None:
|
||||||
|
self.config = config
|
||||||
|
tokenizer = Tokenizer.get_instance()
|
||||||
|
self.formatter = ChatFormat(tokenizer)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def client(self) -> OpenAI:
|
||||||
|
return OpenAI(
|
||||||
|
base_url=self.config.url,
|
||||||
|
api_key=self.config.api_token
|
||||||
|
)
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
return
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def validate_routing_keys(self, routing_keys: list[str]) -> None:
|
||||||
|
# these are the model names the Llama Stack will use to route requests to this provider
|
||||||
|
# perform validation here if necessary
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def _messages_to_databricks_messages(self, messages: list[Message]) -> list:
|
||||||
|
databricks_messages = []
|
||||||
|
for message in messages:
|
||||||
|
if message.role == "ipython":
|
||||||
|
role = "tool"
|
||||||
|
else:
|
||||||
|
role = message.role
|
||||||
|
databricks_messages.append({"role": role, "content": message.content})
|
||||||
|
|
||||||
|
return databricks_messages
|
||||||
|
|
||||||
|
def resolve_databricks_model(self, model_name: str) -> str:
|
||||||
|
model = resolve_model(model_name)
|
||||||
|
assert (
|
||||||
|
model is not None
|
||||||
|
and model.descriptor(shorten_default_variant=True)
|
||||||
|
in DATABRICKS_SUPPORTED_MODELS
|
||||||
|
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(DATABRICKS_SUPPORTED_MODELS.keys())}"
|
||||||
|
|
||||||
|
return DATABRICKS_SUPPORTED_MODELS.get(
|
||||||
|
model.descriptor(shorten_default_variant=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_databricks_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||||
|
options = {}
|
||||||
|
if request.sampling_params is not None:
|
||||||
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||||
|
if getattr(request.sampling_params, attr):
|
||||||
|
options[attr] = getattr(request.sampling_params, attr)
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
async def chat_completion(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: List[Message],
|
||||||
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||||
|
tools: Optional[List[ToolDefinition]] = None,
|
||||||
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||||
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||||
|
stream: Optional[bool] = False,
|
||||||
|
logprobs: Optional[LogProbConfig] = None,
|
||||||
|
) -> AsyncGenerator:
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
tools=tools or [],
|
||||||
|
tool_choice=tool_choice,
|
||||||
|
tool_prompt_format=tool_prompt_format,
|
||||||
|
stream=stream,
|
||||||
|
logprobs=logprobs,
|
||||||
|
)
|
||||||
|
|
||||||
|
messages = augment_messages_for_tools(request)
|
||||||
|
options = self.get_databricks_chat_options(request)
|
||||||
|
databricks_model = self.resolve_databricks_model(request.model)
|
||||||
|
|
||||||
|
if not request.stream:
|
||||||
|
|
||||||
|
r = self.client.chat.completions.create(
|
||||||
|
model=databricks_model,
|
||||||
|
messages=self._messages_to_databricks_messages(messages),
|
||||||
|
stream=False,
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
|
||||||
|
stop_reason = None
|
||||||
|
if r.choices[0].finish_reason:
|
||||||
|
if r.choices[0].finish_reason == "stop":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif r.choices[0].finish_reason == "length":
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
|
||||||
|
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||||
|
r.choices[0].message.content, stop_reason
|
||||||
|
)
|
||||||
|
yield ChatCompletionResponse(
|
||||||
|
completion_message=completion_message,
|
||||||
|
logprobs=None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.start,
|
||||||
|
delta="",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
buffer = ""
|
||||||
|
ipython = False
|
||||||
|
stop_reason = None
|
||||||
|
|
||||||
|
for chunk in self.client.chat.completions.create(
|
||||||
|
model=databricks_model,
|
||||||
|
messages=self._messages_to_databricks_messages(messages),
|
||||||
|
stream=True,
|
||||||
|
**options,
|
||||||
|
):
|
||||||
|
if chunk.choices[0].finish_reason:
|
||||||
|
if (
|
||||||
|
stop_reason is None
|
||||||
|
and chunk.choices[0].finish_reason == "stop"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif (
|
||||||
|
stop_reason is None
|
||||||
|
and chunk.choices[0].finish_reason == "length"
|
||||||
|
):
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
break
|
||||||
|
|
||||||
|
text = chunk.choices[0].delta.content
|
||||||
|
|
||||||
|
if text is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||||
|
if not ipython and text.startswith("<|python_tag|>"):
|
||||||
|
ipython = True
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.started,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
buffer += text
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ipython:
|
||||||
|
if text == "<|eot_id|>":
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
elif text == "<|eom_id|>":
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
text = ""
|
||||||
|
continue
|
||||||
|
|
||||||
|
buffer += text
|
||||||
|
delta = ToolCallDelta(
|
||||||
|
content=text,
|
||||||
|
parse_status=ToolCallParseStatus.in_progress,
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=delta,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
buffer += text
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=text,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# parse tool calls and report errors
|
||||||
|
message = self.formatter.decode_assistant_message_from_content(
|
||||||
|
buffer, stop_reason
|
||||||
|
)
|
||||||
|
parsed_tool_calls = len(message.tool_calls) > 0
|
||||||
|
if ipython and not parsed_tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content="",
|
||||||
|
parse_status=ToolCallParseStatus.failure,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for tool_call in message.tool_calls:
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
|
delta=ToolCallDelta(
|
||||||
|
content=tool_call,
|
||||||
|
parse_status=ToolCallParseStatus.success,
|
||||||
|
),
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.complete,
|
||||||
|
delta="",
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
|
@ -104,6 +104,17 @@ def available_providers() -> List[ProviderSpec]:
|
||||||
config_class="llama_stack.providers.adapters.inference.bedrock.BedrockConfig",
|
config_class="llama_stack.providers.adapters.inference.bedrock.BedrockConfig",
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
|
remote_provider_spec(
|
||||||
|
api=Api.inference,
|
||||||
|
adapter=AdapterSpec(
|
||||||
|
adapter_type="databricks",
|
||||||
|
pip_packages=[
|
||||||
|
"openai",
|
||||||
|
],
|
||||||
|
module="llama_stack.providers.adapters.inference.databricks",
|
||||||
|
config_class="llama_stack.providers.adapters.inference.databricks.DatabricksImplConfig",
|
||||||
|
),
|
||||||
|
),
|
||||||
InlineProviderSpec(
|
InlineProviderSpec(
|
||||||
api=Api.inference,
|
api=Api.inference,
|
||||||
provider_type="vllm",
|
provider_type="vllm",
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue