mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
parent
35093c0b6f
commit
7bc7785b0d
141 changed files with 8252 additions and 4032 deletions
|
@ -2,10 +2,10 @@
|
|||
|
||||
The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-toolchain` package.
|
||||
|
||||
### Subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace.
|
||||
### Subcommands
|
||||
1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace.
|
||||
2. `model`: Lists available models and their properties.
|
||||
3. `distribution`: A distribution is a set of REST APIs, this command allows you to manage (list, install, create, configure, start) distributions. You can read more about this [here](https://github.com/meta-llama/llama-stack/blob/main/docs/cli_reference.md#step-3-installing-and-configuring-distributions).
|
||||
3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](https://github.com/meta-llama/llama-stack/blob/api_updates_1/docs/cli_reference.md#step-3-building-configuring-and-running-llama-stack-servers).
|
||||
|
||||
### Sample Usage
|
||||
|
||||
|
@ -13,7 +13,7 @@ The `llama` CLI tool helps you setup and use the Llama toolchain & agentic syste
|
|||
llama --help
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
usage: llama [-h] {download,model,distribution} ...
|
||||
usage: llama [-h] {download,model,stack,api} ...
|
||||
|
||||
Welcome to the Llama CLI
|
||||
|
||||
|
@ -21,7 +21,7 @@ options:
|
|||
-h, --help show this help message and exit
|
||||
|
||||
subcommands:
|
||||
{download,model,distribution}
|
||||
{download,model,stack,api}
|
||||
</pre>
|
||||
|
||||
## Step 1. Get the models
|
||||
|
@ -101,9 +101,9 @@ The `llama model` command helps you explore the model’s interface.
|
|||
|
||||
### 2.1 Subcommands
|
||||
1. `download`: Download the model from different sources. (meta, huggingface)
|
||||
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
|
||||
2. `list`: Lists all the models available for download with hardware requirements to deploy the models.
|
||||
3. `template`: <TODO: What is a template?>
|
||||
4. `describe`: Describes all the properties of the model.
|
||||
4. `describe`: Describes all the properties of the model.
|
||||
|
||||
### 2.2 Sample Usage
|
||||
|
||||
|
@ -236,11 +236,13 @@ These commands can help understand the model interface and how prompts / message
|
|||
**NOTE**: Outputs in terminal are color printed to show special tokens.
|
||||
|
||||
|
||||
## Step 3: Installing and Configuring Distributions
|
||||
## Step 3: Building, Configuring and Running Llama Stack servers
|
||||
|
||||
An agentic app has several components including model inference, tool execution and system safety shields. Running all these components is made simpler (we hope!) with Llama Stack Distributions.
|
||||
|
||||
A Distribution is simply a collection of REST API providers that are part of the Llama stack. As an example, by running a simple command `llama distribution start`, you can bring up a server serving the following endpoints, among others:
|
||||
The Llama Stack is a collection of REST APIs. An API is _implemented_ by Provider. An assembly of Providers together provides the implementation for the Stack -- this package is called a Distribution.
|
||||
|
||||
As an example, by running a simple command `llama stack run`, you can bring up a server serving the following endpoints, among others:
|
||||
```
|
||||
POST /inference/chat_completion
|
||||
POST /inference/completion
|
||||
|
@ -253,103 +255,135 @@ POST /agentic_system/delete
|
|||
|
||||
The agentic app can now simply point to this server to execute all its needed components.
|
||||
|
||||
A distribution’s behavior can be configured by defining a specification or “spec”. This specification lays out the different API “Providers” that constitute this distribution.
|
||||
Lets build, configure and start a Llama Stack server specified via a "Distribution ID" to understand more !
|
||||
|
||||
Lets install, configure and start a distribution to understand more !
|
||||
|
||||
Let’s start with listing available distributions
|
||||
Let’s start with listing available distributions:
|
||||
```
|
||||
llama distribution list
|
||||
llama stack list-distributions
|
||||
```
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
+--------------+---------------------------------------------+----------------------------------------------------------------------+
|
||||
| Spec ID | ProviderSpecs | Description |
|
||||
+--------------+---------------------------------------------+----------------------------------------------------------------------+
|
||||
| local | { | Use code from `llama_toolchain` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference" | |
|
||||
| | } | |
|
||||
+--------------+---------------------------------------------+----------------------------------------------------------------------+
|
||||
| remote | { | Point to remote services for all llama stack APIs |
|
||||
| | "inference": "inference-remote", | |
|
||||
| | "safety": "safety-remote", | |
|
||||
| | "agentic_system": "agentic_system-remote" | |
|
||||
| | } | |
|
||||
+--------------+---------------------------------------------+----------------------------------------------------------------------+
|
||||
| local-ollama | { | Like local, but use ollama for running LLM inference |
|
||||
| | "inference": "meta-ollama", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference" | |
|
||||
| | } | |
|
||||
+--------------+---------------------------------------------+----------------------------------------------------------------------+
|
||||
i+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| Distribution ID | Providers | Description |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local | { | Use code from `llama_toolchain` itself to serve all llama stack APIs |
|
||||
| | "inference": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| remote | { | Point to remote services for all llama stack APIs |
|
||||
| | "inference": "remote", | |
|
||||
| | "safety": "remote", | |
|
||||
| | "agentic_system": "remote", | |
|
||||
| | "memory": "remote" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-ollama | { | Like local, but use ollama for running LLM inference |
|
||||
| | "inference": "remote::ollama", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-plus-fireworks-inference | { | Use Fireworks.ai for running LLM inference |
|
||||
| | "inference": "remote::fireworks", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
| local-plus-together-inference | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agentic_system": "meta-reference", | |
|
||||
| | "memory": "meta-reference-faiss" | |
|
||||
| | } | |
|
||||
+--------------------------------+---------------------------------------+----------------------------------------------------------------------+
|
||||
</pre>
|
||||
|
||||
As you can see above, each “spec” details the “providers” that make up that spec. For eg. The `local` spec uses the “meta-reference” provider for inference while the `local-ollama` spec relies on a different provider ( ollama ) for inference.
|
||||
As you can see above, each “distribution” details the “providers” it is composed of. For example, `local` uses the “meta-reference” provider for inference while local-ollama relies on a different provider (Ollama) for inference. Similarly, you can use Fireworks or Together.AI for running inference as well.
|
||||
|
||||
Lets install the fully local implementation of the llama-stack – named `local` above.
|
||||
To install a distribution, we run a simple command providing 2 inputs:
|
||||
- **Distribution Id** of the distribution that we want to install ( as obtained from the list-distributions command )
|
||||
- A **Name** for the specific build and configuration of this distribution.
|
||||
|
||||
To install a distro, we run a simple command providing 2 inputs –
|
||||
- **Spec Id** of the distribution that we want to install ( as obtained from the list command )
|
||||
- A **Name** by which this installation will be known locally.
|
||||
Let's imagine you are working with a 8B-Instruct model. The following command will build a package (in the form of a Conda environment) _and_ configure it. As part of the configuration, you will be asked for some inputs (model_id, max_seq_len, etc.) Since we are working with a 8B model, we will name our build `8b-instruct` to help us remember the config.
|
||||
|
||||
```
|
||||
llama distribution install --spec local --name local_llama_8b
|
||||
llama stack build local --name 8b-instruct
|
||||
```
|
||||
|
||||
This will create a new conda environment (name can be passed optionally) and install dependencies (via pip) as required by the distro.
|
||||
|
||||
Once it runs successfully , you should see some outputs in the form
|
||||
Once it runs successfully , you should see some outputs in the form:
|
||||
|
||||
```
|
||||
llama distribution install --spec local --name local_llama_8b
|
||||
```
|
||||
<pre style="font-family: monospace;">
|
||||
$ llama stack build local --name 8b-instruct
|
||||
....
|
||||
....
|
||||
Successfully installed cfgv-3.4.0 distlib-0.3.8 identify-2.6.0 libcst-1.4.0 llama_toolchain-0.0.2 moreorless-0.4.0 nodeenv-1.9.1 pre-commit-3.8.0 stdlibs-2024.5.15 toml-0.10.2 tomlkit-0.13.0 trailrunner-1.4.0 ufmt-2.7.0 usort-1.0.8 virtualenv-20.26.3
|
||||
|
||||
Distribution `local_llama_8b` (with spec local) has been installed successfully!
|
||||
</pre>
|
||||
Successfully setup conda environment. Configuring build...
|
||||
|
||||
Next step is to configure the distribution that you just installed. We provide a simple CLI tool to enable simple configuration.
|
||||
This command will walk you through the configuration process.
|
||||
It will ask for some details like model name, paths to models, etc.
|
||||
...
|
||||
...
|
||||
|
||||
**NOTE**: You will have to download the models if not done already. Follow instructions here on how to download using the llama cli
|
||||
```
|
||||
llama distribution configure --name local_llama_8b
|
||||
YAML configuration has been written to ~/.llama/builds/local/conda/8b-instruct.yaml
|
||||
```
|
||||
|
||||
Here is an example output of how the cli will guide you to fill the configuration:
|
||||
<pre style="font-family: monospace;">
|
||||
Configuring API surface: inference
|
||||
You can re-configure this distribution by running:
|
||||
```
|
||||
llama stack configure local --name 8b-instruct
|
||||
```
|
||||
|
||||
Here is an example run of how the CLI will guide you to fill the configuration
|
||||
```
|
||||
$ llama stack configure local --name 8b-instruct
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (required): Meta-Llama3.1-8B-Instruct
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (required): 4096
|
||||
Enter value for max_batch_size (default: 1): 1
|
||||
Configuring API surface: safety
|
||||
Do you want to configure llama_guard_shield? (y/n): n
|
||||
Do you want to configure prompt_guard_shield? (y/n): n
|
||||
Configuring API surface: agentic_system
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (required): Llama-Guard-3-8B
|
||||
Enter value for excluded_categories (required): []
|
||||
Enter value for disable_input_check (default: False):
|
||||
Enter value for disable_output_check (default: False):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (required): Prompt-Guard-86M
|
||||
...
|
||||
...
|
||||
YAML configuration has been written to ~/.llama/builds/local/conda/8b-instruct.yaml
|
||||
```
|
||||
|
||||
YAML configuration has been written to ~/.llama/distributions/local0/config.yaml
|
||||
</pre>
|
||||
|
||||
As you can see, we did basic configuration above and configured inference to run on model Meta-Llama3.1-8B-Instruct ( obtained from the llama model list command ).
|
||||
For this initial setup we did not set up safety.
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-8B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
## Step 4: Starting a Distribution and Testing it
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
Now let’s start the distribution using the cli.
|
||||
```
|
||||
llama distribution start --name local_llama_8b --port 5000
|
||||
```
|
||||
You should see the distribution start and print the APIs that it is supporting:
|
||||
## Step 4: Starting a Llama Stack Distribution and Testing it
|
||||
|
||||
Now let’s start Llama Stack server.
|
||||
|
||||
You need the YAML configuration file which was written out at the end by the `llama stack build` step.
|
||||
|
||||
```
|
||||
llama stack run local --name 8b-instruct --port 5000
|
||||
```
|
||||
You should see the Stack server start and print the APIs that it is supporting,
|
||||
|
||||
```
|
||||
$ llama stack run local --name 8b-instruct --port 5000
|
||||
|
||||
<pre style="font-family: monospace;">
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
|
@ -376,15 +410,23 @@ INFO: Started server process [453333]
|
|||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
</pre>
|
||||
|
||||
Lets test with a client
|
||||
|
||||
```
|
||||
cd /path/to/llama-toolchain
|
||||
conda activate <env-for-distribution> # ( Eg. local_llama_8b in above example )
|
||||
|
||||
python -m llama_toolchain.inference.client localhost 5000
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/8b-instruct.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
||||
Lets test with a client.
|
||||
```
|
||||
cd /path/to/llama-stack
|
||||
conda activate <env> # any environment containing the llama-toolchain pip package will work
|
||||
|
||||
python -m llama_toolchain.inference.client localhost 5000
|
||||
```
|
||||
|
||||
This will run the chat completion client and query the distribution’s /inference/chat_completion API.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue