API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)

* add tools to chat completion request

* use templates for generating system prompts

* Moved ToolPromptFormat and jinja templates to llama_models.llama3.api

* <WIP> memory changes

- inlined AgenticSystemInstanceConfig so API feels more ergonomic
- renamed it to AgentConfig, AgentInstance -> Agent
- added a MemoryConfig and `memory` parameter
- added `attachments` to input and `output_attachments` to the response

- some naming changes

* InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool

* flesh out memory banks API

* agentic loop has a RAG implementation

* faiss provider implementation

* memory client works

* re-work tool definitions, fix FastAPI issues, fix tool regressions

* fix agentic_system utils

* basic RAG seems to work

* small bug fixes for inline attachments

* Refactor custom tool execution utilities

* Bug fix, show memory retrieval steps in EventLogger

* No need for api_key for Remote providers

* add special unicode character ↵ to showcase newlines in model prompt templates

* remove api.endpoints imports

* combine datatypes.py and endpoints.py into api.py

* Attachment / add TTL api

* split batch_inference from inference

* minor import fixes

* use a single impl for ChatFormat.decode_assistant_mesage

* use interleaved_text_media_as_str() utilityt

* Fix api.datatypes imports

* Add blobfile for tiktoken

* Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly

* templates take optional --format={json,function_tag}

* Rag Updates

* Add `api build` subcommand -- WIP

* fix

* build + run image seems to work

* <WIP> adapters

* bunch more work to make adapters work

* api build works for conda now

* ollama remote adapter works

* Several smaller fixes to make adapters work

Also, reorganized the pattern of __init__ inside providers so
configuration can stay lightweight

* llama distribution -> llama stack + containers (WIP)

* All the new CLI for api + stack work

* Make Fireworks and Together into the Adapter format

* Some quick fixes to the CLI behavior to make it consistent

* Updated README phew

* Update cli_reference.md

* llama_toolchain/distribution -> llama_toolchain/core

* Add termcolor

* update paths

* Add a log just for consistency

* chmod +x scripts

* Fix api dependencies not getting added to configuration

* missing import lol

* Delete utils.py; move to agentic system

* Support downloading of URLs for attachments for code interpreter

* Simplify and generalize `llama api build` yay

* Update `llama stack configure` to be very simple also

* Fix stack start

* Allow building an "adhoc" distribution

* Remote `llama api []` subcommands

* Fixes to llama stack commands and update docs

* Update documentation again and add error messages to llama stack start

* llama stack start -> llama stack run

* Change name of build for less confusion

* Add pyopenapi fork to the repository, update RFC assets

* Remove conflicting annotation

* Added a "--raw" option for model template printing

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
Ashwin Bharambe 2024-09-03 22:39:39 -07:00 committed by GitHub
parent 35093c0b6f
commit 7bc7785b0d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
141 changed files with 8252 additions and 4032 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,98 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from abc import abstractmethod
from typing import Dict, List
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_toolchain.agentic_system.api import * # noqa: F403
class CustomTool:
"""
Developers can define their custom tools that models can use
by extending this class.
Developers need to provide
- name
- description
- params_definition
- implement tool's behavior in `run_impl` method
NOTE: The return of the `run` method needs to be json serializable
"""
@abstractmethod
def get_name(self) -> str:
raise NotImplementedError
@abstractmethod
def get_description(self) -> str:
raise NotImplementedError
@abstractmethod
def get_params_definition(self) -> Dict[str, ToolParamDefinition]:
raise NotImplementedError
def get_instruction_string(self) -> str:
return f"Use the function '{self.get_name()}' to: {self.get_description()}"
def parameters_for_system_prompt(self) -> str:
return json.dumps(
{
"name": self.get_name(),
"description": self.get_description(),
"parameters": {
name: definition.__dict__
for name, definition in self.get_params_definition().items()
},
}
)
def get_tool_definition(self) -> FunctionCallToolDefinition:
return FunctionCallToolDefinition(
function_name=self.get_name(),
description=self.get_description(),
parameters=self.get_params_definition(),
)
@abstractmethod
async def run(self, messages: List[Message]) -> List[Message]:
raise NotImplementedError
class SingleMessageCustomTool(CustomTool):
"""
Helper class to handle custom tools that take a single message
Extending this class and implementing the `run_impl` method will
allow for the tool be called by the model and the necessary plumbing.
"""
async def run(self, messages: List[CompletionMessage]) -> List[ToolResponseMessage]:
assert len(messages) == 1, "Expected single message"
message = messages[0]
tool_call = message.tool_calls[0]
try:
response = await self.run_impl(**tool_call.arguments)
response_str = json.dumps(response, ensure_ascii=False)
except Exception as e:
response_str = f"Error when running tool: {e}"
message = ToolResponseMessage(
call_id=tool_call.call_id,
tool_name=tool_call.tool_name,
content=response_str,
)
return [message]
@abstractmethod
async def run_impl(self, *args, **kwargs):
raise NotImplementedError()