mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)
* add tools to chat completion request
* use templates for generating system prompts
* Moved ToolPromptFormat and jinja templates to llama_models.llama3.api
* <WIP> memory changes
- inlined AgenticSystemInstanceConfig so API feels more ergonomic
- renamed it to AgentConfig, AgentInstance -> Agent
- added a MemoryConfig and `memory` parameter
- added `attachments` to input and `output_attachments` to the response
- some naming changes
* InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool
* flesh out memory banks API
* agentic loop has a RAG implementation
* faiss provider implementation
* memory client works
* re-work tool definitions, fix FastAPI issues, fix tool regressions
* fix agentic_system utils
* basic RAG seems to work
* small bug fixes for inline attachments
* Refactor custom tool execution utilities
* Bug fix, show memory retrieval steps in EventLogger
* No need for api_key for Remote providers
* add special unicode character ↵ to showcase newlines in model prompt templates
* remove api.endpoints imports
* combine datatypes.py and endpoints.py into api.py
* Attachment / add TTL api
* split batch_inference from inference
* minor import fixes
* use a single impl for ChatFormat.decode_assistant_mesage
* use interleaved_text_media_as_str() utilityt
* Fix api.datatypes imports
* Add blobfile for tiktoken
* Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly
* templates take optional --format={json,function_tag}
* Rag Updates
* Add `api build` subcommand -- WIP
* fix
* build + run image seems to work
* <WIP> adapters
* bunch more work to make adapters work
* api build works for conda now
* ollama remote adapter works
* Several smaller fixes to make adapters work
Also, reorganized the pattern of __init__ inside providers so
configuration can stay lightweight
* llama distribution -> llama stack + containers (WIP)
* All the new CLI for api + stack work
* Make Fireworks and Together into the Adapter format
* Some quick fixes to the CLI behavior to make it consistent
* Updated README phew
* Update cli_reference.md
* llama_toolchain/distribution -> llama_toolchain/core
* Add termcolor
* update paths
* Add a log just for consistency
* chmod +x scripts
* Fix api dependencies not getting added to configuration
* missing import lol
* Delete utils.py; move to agentic system
* Support downloading of URLs for attachments for code interpreter
* Simplify and generalize `llama api build` yay
* Update `llama stack configure` to be very simple also
* Fix stack start
* Allow building an "adhoc" distribution
* Remote `llama api []` subcommands
* Fixes to llama stack commands and update docs
* Update documentation again and add error messages to llama stack start
* llama stack start -> llama stack run
* Change name of build for less confusion
* Add pyopenapi fork to the repository, update RFC assets
* Remove conflicting annotation
* Added a "--raw" option for model template printing
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
parent
35093c0b6f
commit
7bc7785b0d
141 changed files with 8252 additions and 4032 deletions
5
llama_toolchain/tools/custom/__init__.py
Normal file
5
llama_toolchain/tools/custom/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
98
llama_toolchain/tools/custom/datatypes.py
Normal file
98
llama_toolchain/tools/custom/datatypes.py
Normal file
|
|
@ -0,0 +1,98 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import Dict, List
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_toolchain.agentic_system.api import * # noqa: F403
|
||||
|
||||
|
||||
class CustomTool:
|
||||
"""
|
||||
Developers can define their custom tools that models can use
|
||||
by extending this class.
|
||||
|
||||
Developers need to provide
|
||||
- name
|
||||
- description
|
||||
- params_definition
|
||||
- implement tool's behavior in `run_impl` method
|
||||
|
||||
NOTE: The return of the `run` method needs to be json serializable
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_name(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_description(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_params_definition(self) -> Dict[str, ToolParamDefinition]:
|
||||
raise NotImplementedError
|
||||
|
||||
def get_instruction_string(self) -> str:
|
||||
return f"Use the function '{self.get_name()}' to: {self.get_description()}"
|
||||
|
||||
def parameters_for_system_prompt(self) -> str:
|
||||
return json.dumps(
|
||||
{
|
||||
"name": self.get_name(),
|
||||
"description": self.get_description(),
|
||||
"parameters": {
|
||||
name: definition.__dict__
|
||||
for name, definition in self.get_params_definition().items()
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
def get_tool_definition(self) -> FunctionCallToolDefinition:
|
||||
return FunctionCallToolDefinition(
|
||||
function_name=self.get_name(),
|
||||
description=self.get_description(),
|
||||
parameters=self.get_params_definition(),
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
async def run(self, messages: List[Message]) -> List[Message]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class SingleMessageCustomTool(CustomTool):
|
||||
"""
|
||||
Helper class to handle custom tools that take a single message
|
||||
Extending this class and implementing the `run_impl` method will
|
||||
allow for the tool be called by the model and the necessary plumbing.
|
||||
"""
|
||||
|
||||
async def run(self, messages: List[CompletionMessage]) -> List[ToolResponseMessage]:
|
||||
assert len(messages) == 1, "Expected single message"
|
||||
|
||||
message = messages[0]
|
||||
|
||||
tool_call = message.tool_calls[0]
|
||||
|
||||
try:
|
||||
response = await self.run_impl(**tool_call.arguments)
|
||||
response_str = json.dumps(response, ensure_ascii=False)
|
||||
except Exception as e:
|
||||
response_str = f"Error when running tool: {e}"
|
||||
|
||||
message = ToolResponseMessage(
|
||||
call_id=tool_call.call_id,
|
||||
tool_name=tool_call.tool_name,
|
||||
content=response_str,
|
||||
)
|
||||
return [message]
|
||||
|
||||
@abstractmethod
|
||||
async def run_impl(self, *args, **kwargs):
|
||||
raise NotImplementedError()
|
||||
Loading…
Add table
Add a link
Reference in a new issue