mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-21 03:59:42 +00:00
API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
parent
35093c0b6f
commit
7bc7785b0d
141 changed files with 8252 additions and 4032 deletions
5
llama_toolchain/tools/custom/__init__.py
Normal file
5
llama_toolchain/tools/custom/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
98
llama_toolchain/tools/custom/datatypes.py
Normal file
98
llama_toolchain/tools/custom/datatypes.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import Dict, List
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_toolchain.agentic_system.api import * # noqa: F403
|
||||
|
||||
|
||||
class CustomTool:
|
||||
"""
|
||||
Developers can define their custom tools that models can use
|
||||
by extending this class.
|
||||
|
||||
Developers need to provide
|
||||
- name
|
||||
- description
|
||||
- params_definition
|
||||
- implement tool's behavior in `run_impl` method
|
||||
|
||||
NOTE: The return of the `run` method needs to be json serializable
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_name(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_description(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_params_definition(self) -> Dict[str, ToolParamDefinition]:
|
||||
raise NotImplementedError
|
||||
|
||||
def get_instruction_string(self) -> str:
|
||||
return f"Use the function '{self.get_name()}' to: {self.get_description()}"
|
||||
|
||||
def parameters_for_system_prompt(self) -> str:
|
||||
return json.dumps(
|
||||
{
|
||||
"name": self.get_name(),
|
||||
"description": self.get_description(),
|
||||
"parameters": {
|
||||
name: definition.__dict__
|
||||
for name, definition in self.get_params_definition().items()
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
def get_tool_definition(self) -> FunctionCallToolDefinition:
|
||||
return FunctionCallToolDefinition(
|
||||
function_name=self.get_name(),
|
||||
description=self.get_description(),
|
||||
parameters=self.get_params_definition(),
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
async def run(self, messages: List[Message]) -> List[Message]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class SingleMessageCustomTool(CustomTool):
|
||||
"""
|
||||
Helper class to handle custom tools that take a single message
|
||||
Extending this class and implementing the `run_impl` method will
|
||||
allow for the tool be called by the model and the necessary plumbing.
|
||||
"""
|
||||
|
||||
async def run(self, messages: List[CompletionMessage]) -> List[ToolResponseMessage]:
|
||||
assert len(messages) == 1, "Expected single message"
|
||||
|
||||
message = messages[0]
|
||||
|
||||
tool_call = message.tool_calls[0]
|
||||
|
||||
try:
|
||||
response = await self.run_impl(**tool_call.arguments)
|
||||
response_str = json.dumps(response, ensure_ascii=False)
|
||||
except Exception as e:
|
||||
response_str = f"Error when running tool: {e}"
|
||||
|
||||
message = ToolResponseMessage(
|
||||
call_id=tool_call.call_id,
|
||||
tool_name=tool_call.tool_name,
|
||||
content=response_str,
|
||||
)
|
||||
return [message]
|
||||
|
||||
@abstractmethod
|
||||
async def run_impl(self, *args, **kwargs):
|
||||
raise NotImplementedError()
|
Loading…
Add table
Add a link
Reference in a new issue