chore: standardize unsupported model error #2517 (#2518)

# What does this PR do?

- llama_stack/exceptions.py: Add UnsupportedModelError class
- remote inference ollama.py and utils/inference/model_registry.py:
Changed ValueError in favor of UnsupportedModelError
- utils/inference/litellm_openai_mixin.py: remove `register_model`
function implementation from `LiteLLMOpenAIMixin` class. Now uses the
parent class `ModelRegistryHelper`'s function implementation

Closes #2517


## Test Plan


1. Create a new `test_run_openai.yaml` and paste the following config in
it:

```yaml
version: '2'
image_name: test-image
apis:
- inference
providers:
  inference:
  - provider_id: openai
    provider_type: remote::openai
    config:
      max_tokens: 8192
models:
- metadata: {}
  model_id: "non-existent-model"
  provider_id: openai
  model_type: llm
server:
  port: 8321
```

And run the server with:
```bash
uv run llama stack run test_run_openai.yaml
```

You should now get a `llama_stack.exceptions.UnsupportedModelError` with
the supported list of models in the error message.

---

Tested for the following remote inference providers, and they all raise
the `UnsupportedModelError`:
- Anthropic
- Cerebras
- Fireworks
- Gemini
- Groq
- Ollama
- OpenAI
- SambaNova
- Together
- Watsonx

---------

Co-authored-by: Rohan Awhad <rawhad@redhat.com>
This commit is contained in:
Rohan Awhad 2025-06-27 14:26:58 -04:00 committed by GitHub
parent 9baa16e498
commit 7cb5d3c60f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 22 additions and 8 deletions

View file

@ -0,0 +1,13 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
class UnsupportedModelError(ValueError):
"""raised when model is not present in the list of supported models"""
def __init__(self, model_name: str, supported_models_list: list[str]):
message = f"'{model_name}' model is not supported. Supported models are: {', '.join(supported_models_list)}"
super().__init__(message)

View file

@ -18,6 +18,7 @@ from llama_stack.apis.common.content_types import (
InterleavedContentItem,
TextContentItem,
)
from llama_stack.apis.common.errors import UnsupportedModelError
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -376,9 +377,7 @@ class OllamaInferenceAdapter(
f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'"
)
return model
raise ValueError(
f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}"
)
raise UnsupportedModelError(model.provider_resource_id, available_models)
model.provider_resource_id = provider_resource_id
return model

View file

@ -13,6 +13,7 @@ from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.common.errors import UnsupportedModelError
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
@ -92,7 +93,7 @@ class LiteLLMOpenAIMixin(
async def register_model(self, model: Model) -> Model:
model_id = self.get_provider_model_id(model.provider_resource_id)
if model_id is None:
raise ValueError(f"Unsupported model: {model.provider_resource_id}")
raise UnsupportedModelError(model.provider_resource_id, self.alias_to_provider_id_map.keys())
return model
def get_litellm_model_name(self, model_id: str) -> str:

View file

@ -8,6 +8,7 @@ from typing import Any
from pydantic import BaseModel, Field
from llama_stack.apis.common.errors import UnsupportedModelError
from llama_stack.apis.models import ModelType
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
@ -34,7 +35,9 @@ def get_huggingface_repo(model_descriptor: str) -> str | None:
def build_hf_repo_model_entry(
provider_model_id: str, model_descriptor: str, additional_aliases: list[str] | None = None
provider_model_id: str,
model_descriptor: str,
additional_aliases: list[str] | None = None,
) -> ProviderModelEntry:
aliases = [
get_huggingface_repo(model_descriptor),
@ -81,9 +84,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
async def register_model(self, model: Model) -> Model:
if not (supported_model_id := self.get_provider_model_id(model.provider_resource_id)):
raise ValueError(
f"Model '{model.provider_resource_id}' is not supported. Supported models are: {', '.join(self.alias_to_provider_id_map.keys())}"
)
raise UnsupportedModelError(model.provider_resource_id, self.alias_to_provider_id_map.keys())
provider_resource_id = self.get_provider_model_id(model.model_id)
if model.model_type == ModelType.embedding:
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model